MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy2d Structured version   Visualization version   GIF version

Theorem isphtpy2d 24942
Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
isphtpy2d.1 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
isphtpy2d.2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹𝑠))
isphtpy2d.3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐺𝑠))
isphtpy2d.4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
isphtpy2d.5 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
Assertion
Ref Expression
isphtpy2d (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠

Proof of Theorem isphtpy2d
StepHypRef Expression
1 isphtpy.2 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 isphtpy.3 . 2 (𝜑𝐺 ∈ (II Cn 𝐽))
3 iitopon 24828 . . . 4 II ∈ (TopOn‘(0[,]1))
43a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
5 isphtpy2d.1 . . 3 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6 isphtpy2d.2 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹𝑠))
7 isphtpy2d.3 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐺𝑠))
84, 1, 2, 5, 6, 7ishtpyd 24930 . 2 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
9 isphtpy2d.4 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
10 isphtpy2d.5 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
111, 2, 8, 9, 10isphtpyd 24941 1 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370  TopOnctopon 22853   Cn ccn 23167   ×t ctx 23503  IIcii 24824  PHtpycphtpy 24923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cn 23170  df-ii 24826  df-htpy 24925  df-phtpy 24926
This theorem is referenced by:  reparphti  24952  reparphtiOLD  24953  pcohtpylem  24975  pcorevlem  24982  txsconnlem  35267  cvxsconn  35270  cvmliftphtlem  35344
  Copyright terms: Public domain W3C validator