![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isphtpy2d | Structured version Visualization version GIF version |
Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | β’ (π β πΉ β (II Cn π½)) |
isphtpy.3 | β’ (π β πΊ β (II Cn π½)) |
isphtpy2d.1 | β’ (π β π» β ((II Γt II) Cn π½)) |
isphtpy2d.2 | β’ ((π β§ π β (0[,]1)) β (π π»0) = (πΉβπ )) |
isphtpy2d.3 | β’ ((π β§ π β (0[,]1)) β (π π»1) = (πΊβπ )) |
isphtpy2d.4 | β’ ((π β§ π β (0[,]1)) β (0π»π ) = (πΉβ0)) |
isphtpy2d.5 | β’ ((π β§ π β (0[,]1)) β (1π»π ) = (πΉβ1)) |
Ref | Expression |
---|---|
isphtpy2d | β’ (π β π» β (πΉ(PHtpyβπ½)πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | . 2 β’ (π β πΉ β (II Cn π½)) | |
2 | isphtpy.3 | . 2 β’ (π β πΊ β (II Cn π½)) | |
3 | iitopon 24620 | . . . 4 β’ II β (TopOnβ(0[,]1)) | |
4 | 3 | a1i 11 | . . 3 β’ (π β II β (TopOnβ(0[,]1))) |
5 | isphtpy2d.1 | . . 3 β’ (π β π» β ((II Γt II) Cn π½)) | |
6 | isphtpy2d.2 | . . 3 β’ ((π β§ π β (0[,]1)) β (π π»0) = (πΉβπ )) | |
7 | isphtpy2d.3 | . . 3 β’ ((π β§ π β (0[,]1)) β (π π»1) = (πΊβπ )) | |
8 | 4, 1, 2, 5, 6, 7 | ishtpyd 24722 | . 2 β’ (π β π» β (πΉ(II Htpy π½)πΊ)) |
9 | isphtpy2d.4 | . 2 β’ ((π β§ π β (0[,]1)) β (0π»π ) = (πΉβ0)) | |
10 | isphtpy2d.5 | . 2 β’ ((π β§ π β (0[,]1)) β (1π»π ) = (πΉβ1)) | |
11 | 1, 2, 8, 9, 10 | isphtpyd 24733 | 1 β’ (π β π» β (πΉ(PHtpyβπ½)πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6544 (class class class)co 7412 0cc0 11113 1c1 11114 [,]cicc 13332 TopOnctopon 22633 Cn ccn 22949 Γt ctx 23285 IIcii 24616 PHtpycphtpy 24715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-icc 13336 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-bases 22670 df-cn 22952 df-ii 24618 df-htpy 24717 df-phtpy 24718 |
This theorem is referenced by: reparphti 24744 reparphtiOLD 24745 pcohtpylem 24767 pcorevlem 24774 txsconnlem 34526 cvxsconn 34529 cvmliftphtlem 34603 |
Copyright terms: Public domain | W3C validator |