MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyid Structured version   Visualization version   GIF version

Theorem htpyid 23508
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpyid.1 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
htpyid.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyid.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpyid (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem htpyid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyid.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyid.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpyid.1 . . 3 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
4 iitopon 23414 . . . . 5 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
61, 5cnmpt1st 22204 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
71, 5, 6, 2cnmpt21f 22208 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
83, 7eqeltrid 2914 . 2 (𝜑𝐺 ∈ ((𝐽 ×t II) Cn 𝐾))
9 simpr 485 . . 3 ((𝜑𝑠𝑋) → 𝑠𝑋)
10 0elunit 12843 . . 3 0 ∈ (0[,]1)
11 fveq2 6663 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
12 eqidd 2819 . . . 4 (𝑦 = 0 → (𝐹𝑠) = (𝐹𝑠))
13 fvex 6676 . . . 4 (𝐹𝑠) ∈ V
1411, 12, 3, 13ovmpo 7299 . . 3 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹𝑠))
159, 10, 14sylancl 586 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺0) = (𝐹𝑠))
16 1elunit 12844 . . 3 1 ∈ (0[,]1)
17 eqidd 2819 . . . 4 (𝑦 = 1 → (𝐹𝑠) = (𝐹𝑠))
1811, 17, 3, 13ovmpo 7299 . . 3 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹𝑠))
199, 16, 18sylancl 586 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺1) = (𝐹𝑠))
201, 2, 2, 8, 15, 19ishtpyd 23506 1 (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cmpo 7147  0cc0 10525  1c1 10526  [,]cicc 12729  TopOnctopon 21446   Cn ccn 21760   ×t ctx 22096  IIcii 23410   Htpy chtpy 23498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-cn 21763  df-tx 22098  df-ii 23412  df-htpy 23501
This theorem is referenced by:  phtpyid  23520
  Copyright terms: Public domain W3C validator