Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > htpyid | Structured version Visualization version GIF version |
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
htpyid.1 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
htpyid.2 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
htpyid.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
htpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyid.2 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | htpyid.4 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | htpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
4 | iitopon 24152 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
6 | 1, 5 | cnmpt1st 22929 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
7 | 1, 5, 6, 2 | cnmpt21f 22933 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
8 | 3, 7 | eqeltrid 2842 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 ×t II) Cn 𝐾)) |
9 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
10 | 0elunit 13311 | . . 3 ⊢ 0 ∈ (0[,]1) | |
11 | fveq2 6834 | . . . 4 ⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) | |
12 | eqidd 2738 | . . . 4 ⊢ (𝑦 = 0 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
13 | fvex 6847 | . . . 4 ⊢ (𝐹‘𝑠) ∈ V | |
14 | 11, 12, 3, 13 | ovmpo 7504 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹‘𝑠)) |
15 | 9, 10, 14 | sylancl 587 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺0) = (𝐹‘𝑠)) |
16 | 1elunit 13312 | . . 3 ⊢ 1 ∈ (0[,]1) | |
17 | eqidd 2738 | . . . 4 ⊢ (𝑦 = 1 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
18 | 11, 17, 3, 13 | ovmpo 7504 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹‘𝑠)) |
19 | 9, 16, 18 | sylancl 587 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺1) = (𝐹‘𝑠)) |
20 | 1, 2, 2, 8, 15, 19 | ishtpyd 24248 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ‘cfv 6488 (class class class)co 7346 ∈ cmpo 7348 0cc0 10981 1c1 10982 [,]cicc 13192 TopOnctopon 22169 Cn ccn 22485 ×t ctx 22821 IIcii 24148 Htpy chtpy 24240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-sup 9308 df-inf 9309 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-q 12799 df-rp 12841 df-xneg 12958 df-xadd 12959 df-xmul 12960 df-icc 13196 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-topgen 17256 df-psmet 20699 df-xmet 20700 df-met 20701 df-bl 20702 df-mopn 20703 df-top 22153 df-topon 22170 df-bases 22206 df-cn 22488 df-tx 22823 df-ii 24150 df-htpy 24243 |
This theorem is referenced by: phtpyid 24262 |
Copyright terms: Public domain | W3C validator |