MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyid Structured version   Visualization version   GIF version

Theorem htpyid 23184
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpyid.1 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
htpyid.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyid.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpyid (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem htpyid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyid.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyid.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpyid.1 . . 3 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
4 iitopon 23090 . . . . 5 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
61, 5cnmpt1st 21880 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
71, 5, 6, 2cnmpt21f 21884 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
83, 7syl5eqel 2862 . 2 (𝜑𝐺 ∈ ((𝐽 ×t II) Cn 𝐾))
9 simpr 479 . . 3 ((𝜑𝑠𝑋) → 𝑠𝑋)
10 0elunit 12605 . . 3 0 ∈ (0[,]1)
11 fveq2 6446 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
12 eqidd 2778 . . . 4 (𝑦 = 0 → (𝐹𝑠) = (𝐹𝑠))
13 fvex 6459 . . . 4 (𝐹𝑠) ∈ V
1411, 12, 3, 13ovmpt2 7073 . . 3 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹𝑠))
159, 10, 14sylancl 580 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺0) = (𝐹𝑠))
16 1elunit 12606 . . 3 1 ∈ (0[,]1)
17 eqidd 2778 . . . 4 (𝑦 = 1 → (𝐹𝑠) = (𝐹𝑠))
1811, 17, 3, 13ovmpt2 7073 . . 3 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹𝑠))
199, 16, 18sylancl 580 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺1) = (𝐹𝑠))
201, 2, 2, 8, 15, 19ishtpyd 23182 1 (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  cmpt2 6924  0cc0 10272  1c1 10273  [,]cicc 12490  TopOnctopon 21122   Cn ccn 21436   ×t ctx 21772  IIcii 23086   Htpy chtpy 23174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-icc 12494  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-cn 21439  df-tx 21774  df-ii 23088  df-htpy 23177
This theorem is referenced by:  phtpyid  23196
  Copyright terms: Public domain W3C validator