MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyid Structured version   Visualization version   GIF version

Theorem htpyid 24121
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpyid.1 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
htpyid.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyid.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
htpyid (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem htpyid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyid.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyid.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpyid.1 . . 3 𝐺 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
4 iitopon 24023 . . . . 5 II ∈ (TopOn‘(0[,]1))
54a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
61, 5cnmpt1st 22800 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
71, 5, 6, 2cnmpt21f 22804 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
83, 7eqeltrid 2844 . 2 (𝜑𝐺 ∈ ((𝐽 ×t II) Cn 𝐾))
9 simpr 484 . . 3 ((𝜑𝑠𝑋) → 𝑠𝑋)
10 0elunit 13183 . . 3 0 ∈ (0[,]1)
11 fveq2 6768 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
12 eqidd 2740 . . . 4 (𝑦 = 0 → (𝐹𝑠) = (𝐹𝑠))
13 fvex 6781 . . . 4 (𝐹𝑠) ∈ V
1411, 12, 3, 13ovmpo 7424 . . 3 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹𝑠))
159, 10, 14sylancl 585 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺0) = (𝐹𝑠))
16 1elunit 13184 . . 3 1 ∈ (0[,]1)
17 eqidd 2740 . . . 4 (𝑦 = 1 → (𝐹𝑠) = (𝐹𝑠))
1811, 17, 3, 13ovmpo 7424 . . 3 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹𝑠))
199, 16, 18sylancl 585 . 2 ((𝜑𝑠𝑋) → (𝑠𝐺1) = (𝐹𝑠))
201, 2, 2, 8, 15, 19ishtpyd 24119 1 (𝜑𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  cmpo 7270  0cc0 10855  1c1 10856  [,]cicc 13064  TopOnctopon 22040   Cn ccn 22356   ×t ctx 22692  IIcii 24019   Htpy chtpy 24111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-icc 13068  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-bases 22077  df-cn 22359  df-tx 22694  df-ii 24021  df-htpy 24114
This theorem is referenced by:  phtpyid  24133
  Copyright terms: Public domain W3C validator