Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pttoponconst | Structured version Visualization version GIF version |
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ptuniconst.2 | ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) |
Ref | Expression |
---|---|
pttoponconst | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ (TopOn‘𝑋)) | |
2 | 1 | ralrimivw 3104 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) |
3 | ptuniconst.2 | . . . . 5 ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) | |
4 | fconstmpt 5649 | . . . . . 6 ⊢ (𝐴 × {𝑅}) = (𝑥 ∈ 𝐴 ↦ 𝑅) | |
5 | 4 | fveq2i 6777 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
6 | 3, 5 | eqtri 2766 | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
7 | 6 | pttopon 22747 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
8 | 2, 7 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
9 | toponmax 22075 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
10 | ixpconstg 8694 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) | |
11 | 9, 10 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) |
12 | 11 | fveq2d 6778 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → (TopOn‘X𝑥 ∈ 𝐴 𝑋) = (TopOn‘(𝑋 ↑m 𝐴))) |
13 | 8, 12 | eleqtrd 2841 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Xcixp 8685 ∏tcpt 17149 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-fin 8737 df-fi 9170 df-topgen 17154 df-pt 17155 df-top 22043 df-topon 22060 df-bases 22096 |
This theorem is referenced by: ptuniconst 22749 pt1hmeo 22957 tmdgsum 23246 efmndtmd 23252 symgtgp 23257 poimir 35810 broucube 35811 |
Copyright terms: Public domain | W3C validator |