MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttoponconst Structured version   Visualization version   GIF version

Theorem pttoponconst 22202
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptuniconst.2 𝐽 = (∏t‘(𝐴 × {𝑅}))
Assertion
Ref Expression
pttoponconst ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))

Proof of Theorem pttoponconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ (TopOn‘𝑋))
21ralrimivw 3150 . . 3 (𝑅 ∈ (TopOn‘𝑋) → ∀𝑥𝐴 𝑅 ∈ (TopOn‘𝑋))
3 ptuniconst.2 . . . . 5 𝐽 = (∏t‘(𝐴 × {𝑅}))
4 fconstmpt 5578 . . . . . 6 (𝐴 × {𝑅}) = (𝑥𝐴𝑅)
54fveq2i 6648 . . . . 5 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝑥𝐴𝑅))
63, 5eqtri 2821 . . . 4 𝐽 = (∏t‘(𝑥𝐴𝑅))
76pttopon 22201 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝑋))
82, 7sylan2 595 . 2 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝑋))
9 toponmax 21531 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑋𝑅)
10 ixpconstg 8453 . . . 4 ((𝐴𝑉𝑋𝑅) → X𝑥𝐴 𝑋 = (𝑋m 𝐴))
119, 10sylan2 595 . . 3 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → X𝑥𝐴 𝑋 = (𝑋m 𝐴))
1211fveq2d 6649 . 2 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → (TopOn‘X𝑥𝐴 𝑋) = (TopOn‘(𝑋m 𝐴)))
138, 12eleqtrd 2892 1 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  {csn 4525  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  m cmap 8389  Xcixp 8444  tcpt 16704  TopOnctopon 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-fin 8496  df-fi 8859  df-topgen 16709  df-pt 16710  df-top 21499  df-topon 21516  df-bases 21551
This theorem is referenced by:  ptuniconst  22203  pt1hmeo  22411  tmdgsum  22700  efmndtmd  22706  symgtgp  22711  poimir  35090  broucube  35091
  Copyright terms: Public domain W3C validator