| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pttoponconst | Structured version Visualization version GIF version | ||
| Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptuniconst.2 | ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) |
| Ref | Expression |
|---|---|
| pttoponconst | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ (TopOn‘𝑋)) | |
| 2 | 1 | ralrimivw 3134 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | ptuniconst.2 | . . . . 5 ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) | |
| 4 | fconstmpt 5714 | . . . . . 6 ⊢ (𝐴 × {𝑅}) = (𝑥 ∈ 𝐴 ↦ 𝑅) | |
| 5 | 4 | fveq2i 6876 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
| 6 | 3, 5 | eqtri 2757 | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
| 7 | 6 | pttopon 23521 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
| 8 | 2, 7 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
| 9 | toponmax 22851 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
| 10 | ixpconstg 8915 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) | |
| 11 | 9, 10 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) |
| 12 | 11 | fveq2d 6877 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → (TopOn‘X𝑥 ∈ 𝐴 𝑋) = (TopOn‘(𝑋 ↑m 𝐴))) |
| 13 | 8, 12 | eleqtrd 2835 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {csn 4599 ↦ cmpt 5199 × cxp 5650 ‘cfv 6528 (class class class)co 7400 ↑m cmap 8835 Xcixp 8906 ∏tcpt 17439 TopOnctopon 22835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1o 8475 df-2o 8476 df-map 8837 df-ixp 8907 df-en 8955 df-fin 8958 df-fi 9418 df-topgen 17444 df-pt 17445 df-top 22819 df-topon 22836 df-bases 22871 |
| This theorem is referenced by: ptuniconst 23523 pt1hmeo 23731 tmdgsum 24020 efmndtmd 24026 symgtgp 24031 poimir 37606 broucube 37607 |
| Copyright terms: Public domain | W3C validator |