| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pttoponconst | Structured version Visualization version GIF version | ||
| Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptuniconst.2 | ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) |
| Ref | Expression |
|---|---|
| pttoponconst | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ (TopOn‘𝑋)) | |
| 2 | 1 | ralrimivw 3129 | . . 3 ⊢ (𝑅 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | ptuniconst.2 | . . . . 5 ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) | |
| 4 | fconstmpt 5700 | . . . . . 6 ⊢ (𝐴 × {𝑅}) = (𝑥 ∈ 𝐴 ↦ 𝑅) | |
| 5 | 4 | fveq2i 6861 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
| 6 | 3, 5 | eqtri 2752 | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝑅)) |
| 7 | 6 | pttopon 23483 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
| 8 | 2, 7 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝑋)) |
| 9 | toponmax 22813 | . . . 4 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
| 10 | ixpconstg 8879 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) | |
| 11 | 9, 10 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → X𝑥 ∈ 𝐴 𝑋 = (𝑋 ↑m 𝐴)) |
| 12 | 11 | fveq2d 6862 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → (TopOn‘X𝑥 ∈ 𝐴 𝑋) = (TopOn‘(𝑋 ↑m 𝐴))) |
| 13 | 8, 12 | eleqtrd 2830 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4589 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Xcixp 8870 ∏tcpt 17401 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1o 8434 df-2o 8435 df-map 8801 df-ixp 8871 df-en 8919 df-fin 8922 df-fi 9362 df-topgen 17406 df-pt 17407 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: ptuniconst 23485 pt1hmeo 23693 tmdgsum 23982 efmndtmd 23988 symgtgp 23993 poimir 37647 broucube 37648 |
| Copyright terms: Public domain | W3C validator |