![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pttoponconst | Structured version Visualization version GIF version |
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ptuniconst.2 | β’ π½ = (βtβ(π΄ Γ {π })) |
Ref | Expression |
---|---|
pttoponconst | β’ ((π΄ β π β§ π β (TopOnβπ)) β π½ β (TopOnβ(π βm π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π β (TopOnβπ) β π β (TopOnβπ)) | |
2 | 1 | ralrimivw 3149 | . . 3 β’ (π β (TopOnβπ) β βπ₯ β π΄ π β (TopOnβπ)) |
3 | ptuniconst.2 | . . . . 5 β’ π½ = (βtβ(π΄ Γ {π })) | |
4 | fconstmpt 5738 | . . . . . 6 β’ (π΄ Γ {π }) = (π₯ β π΄ β¦ π ) | |
5 | 4 | fveq2i 6894 | . . . . 5 β’ (βtβ(π΄ Γ {π })) = (βtβ(π₯ β π΄ β¦ π )) |
6 | 3, 5 | eqtri 2759 | . . . 4 β’ π½ = (βtβ(π₯ β π΄ β¦ π )) |
7 | 6 | pttopon 23321 | . . 3 β’ ((π΄ β π β§ βπ₯ β π΄ π β (TopOnβπ)) β π½ β (TopOnβXπ₯ β π΄ π)) |
8 | 2, 7 | sylan2 592 | . 2 β’ ((π΄ β π β§ π β (TopOnβπ)) β π½ β (TopOnβXπ₯ β π΄ π)) |
9 | toponmax 22649 | . . . 4 β’ (π β (TopOnβπ) β π β π ) | |
10 | ixpconstg 8904 | . . . 4 β’ ((π΄ β π β§ π β π ) β Xπ₯ β π΄ π = (π βm π΄)) | |
11 | 9, 10 | sylan2 592 | . . 3 β’ ((π΄ β π β§ π β (TopOnβπ)) β Xπ₯ β π΄ π = (π βm π΄)) |
12 | 11 | fveq2d 6895 | . 2 β’ ((π΄ β π β§ π β (TopOnβπ)) β (TopOnβXπ₯ β π΄ π) = (TopOnβ(π βm π΄))) |
13 | 8, 12 | eleqtrd 2834 | 1 β’ ((π΄ β π β§ π β (TopOnβπ)) β π½ β (TopOnβ(π βm π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 {csn 4628 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 (class class class)co 7412 βm cmap 8824 Xcixp 8895 βtcpt 17389 TopOnctopon 22633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-fin 8947 df-fi 9410 df-topgen 17394 df-pt 17395 df-top 22617 df-topon 22634 df-bases 22670 |
This theorem is referenced by: ptuniconst 23323 pt1hmeo 23531 tmdgsum 23820 efmndtmd 23826 symgtgp 23831 poimir 36825 broucube 36826 |
Copyright terms: Public domain | W3C validator |