![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lelttrdi | Structured version Visualization version GIF version |
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
Ref | Expression |
---|---|
lelttrdi.r | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
lelttrdi.l | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
lelttrdi | ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrdi.r | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
2 | 1 | simp1d 1141 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
4 | 1 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
6 | 1 | simp3d 1143 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ) |
8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | lelttrdi.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐶) |
11 | 3, 5, 7, 8, 10 | ltletrd 11419 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐶) |
12 | 11 | ex 412 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: difgtsumgt 12577 subfzo0 13825 eucrctshift 30272 gpgusgralem 47946 |
Copyright terms: Public domain | W3C validator |