|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lelttrdi | Structured version Visualization version GIF version | ||
| Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| lelttrdi.r | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | 
| lelttrdi.l | ⊢ (𝜑 → 𝐵 ≤ 𝐶) | 
| Ref | Expression | 
|---|---|
| lelttrdi | ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lelttrdi.r | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
| 2 | 1 | simp1d 1143 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) | 
| 4 | 1 | simp2d 1144 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) | 
| 6 | 1 | simp3d 1145 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ) | 
| 8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 9 | lelttrdi.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐶) | 
| 11 | 3, 5, 7, 8, 10 | ltletrd 11421 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐶) | 
| 12 | 11 | ex 412 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 ℝcr 11154 < clt 11295 ≤ cle 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 | 
| This theorem is referenced by: difgtsumgt 12579 subfzo0 13828 eucrctshift 30262 gpgusgralem 48011 | 
| Copyright terms: Public domain | W3C validator |