MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difgtsumgt Structured version   Visualization version   GIF version

Theorem difgtsumgt 11928
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difgtsumgt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 < (𝐴𝐵) → 𝐶 < (𝐴 + 𝐵)))

Proof of Theorem difgtsumgt
StepHypRef Expression
1 recn 10604 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 nn0cn 11885 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 615 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 negsub 10911 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴𝐵))
76eqcomd 2827 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴𝐵) = (𝐴 + -𝐵))
87breq2d 5051 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 < (𝐴𝐵) ↔ 𝐶 < (𝐴 + -𝐵)))
9 simp3 1135 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
10 simp1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
11 nn0re 11884 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1211renegcld 11044 . . . . . 6 (𝐵 ∈ ℕ0 → -𝐵 ∈ ℝ)
13123ad2ant2 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → -𝐵 ∈ ℝ)
1410, 13readdcld 10647 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ)
15113ad2ant2 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1610, 15readdcld 10647 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
179, 14, 163jca 1125 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ (𝐴 + -𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ))
18 nn0negleid 11927 . . . . 5 (𝐵 ∈ ℕ0 → -𝐵𝐵)
19183ad2ant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → -𝐵𝐵)
2013, 15, 10, 19leadd2dd 11232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐴 + -𝐵) ≤ (𝐴 + 𝐵))
2117, 20lelttrdi 10779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 < (𝐴 + -𝐵) → 𝐶 < (𝐴 + 𝐵)))
228, 21sylbid 243 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 < (𝐴𝐵) → 𝐶 < (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5039  (class class class)co 7130  cc 10512  cr 10513   + caddc 10517   < clt 10652  cle 10653  cmin 10847  -cneg 10848  0cn0 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876
This theorem is referenced by:  difsqpwdvds  16200
  Copyright terms: Public domain W3C validator