![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difgtsumgt | Structured version Visualization version GIF version |
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
Ref | Expression |
---|---|
difgtsumgt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11204 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | nn0cn 12487 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ) | |
3 | 1, 2 | anim12i 612 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
4 | 3 | 3adant3 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | negsub 11513 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
7 | 6 | eqcomd 2737 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) = (𝐴 + -𝐵)) |
8 | 7 | breq2d 5160 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) ↔ 𝐶 < (𝐴 + -𝐵))) |
9 | simp3 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
10 | simp1 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | nn0re 12486 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
12 | 11 | renegcld 11646 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → -𝐵 ∈ ℝ) |
13 | 12 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → -𝐵 ∈ ℝ) |
14 | 10, 13 | readdcld 11248 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
15 | 11 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
16 | 10, 15 | readdcld 11248 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
17 | 9, 14, 16 | 3jca 1127 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ (𝐴 + -𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ)) |
18 | nn0negleid 12529 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → -𝐵 ≤ 𝐵) | |
19 | 18 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → -𝐵 ≤ 𝐵) |
20 | 13, 15, 10, 19 | leadd2dd 11834 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) ≤ (𝐴 + 𝐵)) |
21 | 17, 20 | lelttrdi 11381 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + -𝐵) → 𝐶 < (𝐴 + 𝐵))) |
22 | 8, 21 | sylbid 239 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℂcc 11112 ℝcr 11113 + caddc 11117 < clt 11253 ≤ cle 11254 − cmin 11449 -cneg 11450 ℕ0cn0 12477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 |
This theorem is referenced by: difsqpwdvds 16825 |
Copyright terms: Public domain | W3C validator |