Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem1 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem1 48569
Description: Lemma 1 for lindslinindsimp2 48574. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem1
StepHypRef Expression
1 lindslinind.y . 2 𝑌 = ((invg𝑅)‘(𝑓𝑥))
2 lindslinind.r . . . . 5 𝑅 = (Scalar‘𝑀)
32lmodfgrp 20802 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
43adantl 481 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
5 elmapi 8773 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
6 ffvelcdm 7014 . . . . . . . 8 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
76a1d 25 . . . . . . 7 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵))
87ex 412 . . . . . 6 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
95, 8syl 17 . . . . 5 (𝑓 ∈ (𝐵m 𝑆) → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
109com13 88 . . . 4 (𝑆 ⊆ (Base‘𝑀) → (𝑥𝑆 → (𝑓 ∈ (𝐵m 𝑆) → (𝑓𝑥) ∈ 𝐵)))
11103imp 1110 . . 3 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → (𝑓𝑥) ∈ 𝐵)
12 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
13 eqid 2731 . . . 4 (invg𝑅) = (invg𝑅)
1412, 13grpinvcl 18900 . . 3 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ 𝐵) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
154, 11, 14syl2an 596 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
161, 15eqeltrid 2835 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4573  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Basecbs 17120  Scalarcsca 17164  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  LModclmod 20793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-ring 20153  df-lmod 20795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator