Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem1 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem1 48380
Description: Lemma 1 for lindslinindsimp2 48385. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem1
StepHypRef Expression
1 lindslinind.y . 2 𝑌 = ((invg𝑅)‘(𝑓𝑥))
2 lindslinind.r . . . . 5 𝑅 = (Scalar‘𝑀)
32lmodfgrp 20868 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
43adantl 481 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
5 elmapi 8890 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
6 ffvelcdm 7100 . . . . . . . 8 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
76a1d 25 . . . . . . 7 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵))
87ex 412 . . . . . 6 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
95, 8syl 17 . . . . 5 (𝑓 ∈ (𝐵m 𝑆) → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
109com13 88 . . . 4 (𝑆 ⊆ (Base‘𝑀) → (𝑥𝑆 → (𝑓 ∈ (𝐵m 𝑆) → (𝑓𝑥) ∈ 𝐵)))
11103imp 1110 . . 3 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → (𝑓𝑥) ∈ 𝐵)
12 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
13 eqid 2736 . . . 4 (invg𝑅) = (invg𝑅)
1412, 13grpinvcl 19006 . . 3 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ 𝐵) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
154, 11, 14syl2an 596 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
161, 15eqeltrid 2844 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cdif 3947  wss 3950  {csn 4625  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  Basecbs 17248  Scalarcsca 17301  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953  LModclmod 20859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-map 8869  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-ring 20233  df-lmod 20861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator