| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for lindslinindsimp2 48574. (Contributed by AV, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
| lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
| lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
| lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| Ref | Expression |
|---|---|
| lindslinindimp2lem1 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindslinind.y | . 2 ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) | |
| 2 | lindslinind.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 3 | 2 | lmodfgrp 20802 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑅 ∈ Grp) |
| 5 | elmapi 8773 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
| 6 | ffvelcdm 7014 | . . . . . . . 8 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) | |
| 7 | 6 | a1d 25 | . . . . . . 7 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵)) |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑓:𝑆⟶𝐵 → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
| 10 | 9 | com13 88 | . . . 4 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑥 ∈ 𝑆 → (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑓‘𝑥) ∈ 𝐵))) |
| 11 | 10 | 3imp 1110 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → (𝑓‘𝑥) ∈ 𝐵) |
| 12 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | eqid 2731 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 14 | 12, 13 | grpinvcl 18900 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑓‘𝑥) ∈ 𝐵) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
| 15 | 4, 11, 14 | syl2an 596 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
| 16 | 1, 15 | eqeltrid 2835 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 LModclmod 20793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-ring 20153 df-lmod 20795 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |