Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem1 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem1 48187
Description: Lemma 1 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem1
StepHypRef Expression
1 lindslinind.y . 2 𝑌 = ((invg𝑅)‘(𝑓𝑥))
2 lindslinind.r . . . . 5 𝑅 = (Scalar‘𝑀)
32lmodfgrp 20889 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
43adantl 481 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
5 elmapi 8907 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
6 ffvelcdm 7115 . . . . . . . 8 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
76a1d 25 . . . . . . 7 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵))
87ex 412 . . . . . 6 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
95, 8syl 17 . . . . 5 (𝑓 ∈ (𝐵m 𝑆) → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
109com13 88 . . . 4 (𝑆 ⊆ (Base‘𝑀) → (𝑥𝑆 → (𝑓 ∈ (𝐵m 𝑆) → (𝑓𝑥) ∈ 𝐵)))
11103imp 1111 . . 3 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → (𝑓𝑥) ∈ 𝐵)
12 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
13 eqid 2740 . . . 4 (invg𝑅) = (invg𝑅)
1412, 13grpinvcl 19027 . . 3 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ 𝐵) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
154, 11, 14syl2an 595 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
161, 15eqeltrid 2848 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  {csn 4648  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ring 20262  df-lmod 20882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator