![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lindslinindsimp2 48309. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem1 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindslinind.y | . 2 ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) | |
2 | lindslinind.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
3 | 2 | lmodfgrp 20884 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑅 ∈ Grp) |
5 | elmapi 8888 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
6 | ffvelcdm 7101 | . . . . . . . 8 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) | |
7 | 6 | a1d 25 | . . . . . . 7 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵)) |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑓:𝑆⟶𝐵 → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
10 | 9 | com13 88 | . . . 4 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑥 ∈ 𝑆 → (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑓‘𝑥) ∈ 𝐵))) |
11 | 10 | 3imp 1110 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → (𝑓‘𝑥) ∈ 𝐵) |
12 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
13 | eqid 2735 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
14 | 12, 13 | grpinvcl 19018 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑓‘𝑥) ∈ 𝐵) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
15 | 4, 11, 14 | syl2an 596 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
16 | 1, 15 | eqeltrid 2843 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 Grpcgrp 18964 invgcminusg 18965 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-ring 20253 df-lmod 20877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |