![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lindslinindsimp2 47232. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | β’ π = (Scalarβπ) |
lindslinind.b | β’ π΅ = (Baseβπ ) |
lindslinind.0 | β’ 0 = (0gβπ ) |
lindslinind.z | β’ π = (0gβπ) |
lindslinind.y | β’ π = ((invgβπ )β(πβπ₯)) |
lindslinind.g | β’ πΊ = (π βΎ (π β {π₯})) |
Ref | Expression |
---|---|
lindslinindimp2lem1 | β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindslinind.y | . 2 β’ π = ((invgβπ )β(πβπ₯)) | |
2 | lindslinind.r | . . . . 5 β’ π = (Scalarβπ) | |
3 | 2 | lmodfgrp 20624 | . . . 4 β’ (π β LMod β π β Grp) |
4 | 3 | adantl 481 | . . 3 β’ ((π β π β§ π β LMod) β π β Grp) |
5 | elmapi 8847 | . . . . . 6 β’ (π β (π΅ βm π) β π:πβΆπ΅) | |
6 | ffvelcdm 7083 | . . . . . . . 8 β’ ((π:πβΆπ΅ β§ π₯ β π) β (πβπ₯) β π΅) | |
7 | 6 | a1d 25 | . . . . . . 7 β’ ((π:πβΆπ΅ β§ π₯ β π) β (π β (Baseβπ) β (πβπ₯) β π΅)) |
8 | 7 | ex 412 | . . . . . 6 β’ (π:πβΆπ΅ β (π₯ β π β (π β (Baseβπ) β (πβπ₯) β π΅))) |
9 | 5, 8 | syl 17 | . . . . 5 β’ (π β (π΅ βm π) β (π₯ β π β (π β (Baseβπ) β (πβπ₯) β π΅))) |
10 | 9 | com13 88 | . . . 4 β’ (π β (Baseβπ) β (π₯ β π β (π β (π΅ βm π) β (πβπ₯) β π΅))) |
11 | 10 | 3imp 1110 | . . 3 β’ ((π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π)) β (πβπ₯) β π΅) |
12 | lindslinind.b | . . . 4 β’ π΅ = (Baseβπ ) | |
13 | eqid 2731 | . . . 4 β’ (invgβπ ) = (invgβπ ) | |
14 | 12, 13 | grpinvcl 18909 | . . 3 β’ ((π β Grp β§ (πβπ₯) β π΅) β ((invgβπ )β(πβπ₯)) β π΅) |
15 | 4, 11, 14 | syl2an 595 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β ((invgβπ )β(πβπ₯)) β π΅) |
16 | 1, 15 | eqeltrid 2836 | 1 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β cdif 3945 β wss 3948 {csn 4628 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7412 βm cmap 8824 Basecbs 17149 Scalarcsca 17205 0gc0g 17390 Grpcgrp 18856 invgcminusg 18857 LModclmod 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8826 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-ring 20130 df-lmod 20617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |