Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem1 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem1 48444
Description: Lemma 1 for lindslinindsimp2 48449. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem1
StepHypRef Expression
1 lindslinind.y . 2 𝑌 = ((invg𝑅)‘(𝑓𝑥))
2 lindslinind.r . . . . 5 𝑅 = (Scalar‘𝑀)
32lmodfgrp 20775 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
43adantl 481 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
5 elmapi 8822 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
6 ffvelcdm 7053 . . . . . . . 8 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
76a1d 25 . . . . . . 7 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵))
87ex 412 . . . . . 6 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
95, 8syl 17 . . . . 5 (𝑓 ∈ (𝐵m 𝑆) → (𝑥𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓𝑥) ∈ 𝐵)))
109com13 88 . . . 4 (𝑆 ⊆ (Base‘𝑀) → (𝑥𝑆 → (𝑓 ∈ (𝐵m 𝑆) → (𝑓𝑥) ∈ 𝐵)))
11103imp 1110 . . 3 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → (𝑓𝑥) ∈ 𝐵)
12 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
13 eqid 2729 . . . 4 (invg𝑅) = (invg𝑅)
1412, 13grpinvcl 18919 . . 3 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ 𝐵) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
154, 11, 14syl2an 596 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → ((invg𝑅)‘(𝑓𝑥)) ∈ 𝐵)
161, 15eqeltrid 2832 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  wss 3914  {csn 4589  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  Scalarcsca 17223  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  LModclmod 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-ring 20144  df-lmod 20768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator