| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for lindslinindsimp2 48425. (Contributed by AV, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
| lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
| lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
| lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| Ref | Expression |
|---|---|
| lindslinindimp2lem1 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindslinind.y | . 2 ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) | |
| 2 | lindslinind.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 3 | 2 | lmodfgrp 20751 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑅 ∈ Grp) |
| 5 | elmapi 8799 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
| 6 | ffvelcdm 7035 | . . . . . . . 8 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) | |
| 7 | 6 | a1d 25 | . . . . . . 7 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵)) |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑓:𝑆⟶𝐵 → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
| 10 | 9 | com13 88 | . . . 4 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑥 ∈ 𝑆 → (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑓‘𝑥) ∈ 𝐵))) |
| 11 | 10 | 3imp 1110 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → (𝑓‘𝑥) ∈ 𝐵) |
| 12 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | eqid 2729 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 14 | 12, 13 | grpinvcl 18895 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑓‘𝑥) ∈ 𝐵) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
| 15 | 4, 11, 14 | syl2an 596 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
| 16 | 1, 15 | eqeltrid 2832 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Basecbs 17155 Scalarcsca 17199 0gc0g 17378 Grpcgrp 18841 invgcminusg 18842 LModclmod 20742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-ring 20120 df-lmod 20744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |