![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lindslinindsimp2 47531. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem1 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindslinind.y | . 2 ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) | |
2 | lindslinind.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
3 | 2 | lmodfgrp 20752 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑅 ∈ Grp) |
5 | elmapi 8868 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
6 | ffvelcdm 7091 | . . . . . . . 8 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) | |
7 | 6 | a1d 25 | . . . . . . 7 ⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵)) |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑓:𝑆⟶𝐵 → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑥 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑓‘𝑥) ∈ 𝐵))) |
10 | 9 | com13 88 | . . . 4 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑥 ∈ 𝑆 → (𝑓 ∈ (𝐵 ↑m 𝑆) → (𝑓‘𝑥) ∈ 𝐵))) |
11 | 10 | 3imp 1109 | . . 3 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → (𝑓‘𝑥) ∈ 𝐵) |
12 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
13 | eqid 2728 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
14 | 12, 13 | grpinvcl 18944 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑓‘𝑥) ∈ 𝐵) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
15 | 4, 11, 14 | syl2an 595 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) ∈ 𝐵) |
16 | 1, 15 | eqeltrid 2833 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 {csn 4629 ↾ cres 5680 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8845 Basecbs 17180 Scalarcsca 17236 0gc0g 17421 Grpcgrp 18890 invgcminusg 18891 LModclmod 20743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8847 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-ring 20175 df-lmod 20745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |