| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for lindslinindsimp2 48406. (Contributed by AV, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
| lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
| lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
| lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| Ref | Expression |
|---|---|
| lindslinindimp2lem2 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8868 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
| 2 | 1 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → 𝑓:𝑆⟶𝐵) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑓:𝑆⟶𝐵) |
| 4 | difss 4116 | . . . 4 ⊢ (𝑆 ∖ {𝑥}) ⊆ 𝑆 | |
| 5 | fssres 6749 | . . . 4 ⊢ ((𝑓:𝑆⟶𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) | |
| 6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
| 7 | lindslinind.g | . . . 4 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
| 8 | 7 | feq1i 6702 | . . 3 ⊢ (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
| 9 | 6, 8 | sylibr 234 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵) |
| 10 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | 10 | fvexi 6895 | . . 3 ⊢ 𝐵 ∈ V |
| 12 | difexg 5304 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | |
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V) |
| 14 | elmapg 8858 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) | |
| 15 | 11, 13, 14 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) |
| 16 | 9, 15 | mpbird 257 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ↾ cres 5661 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Basecbs 17233 Scalarcsca 17279 0gc0g 17458 invgcminusg 18922 LModclmod 20822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 |
| This theorem is referenced by: lindslinindimp2lem4 48404 lindslinindsimp2lem5 48405 |
| Copyright terms: Public domain | W3C validator |