![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 47134. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | β’ π = (Scalarβπ) |
lindslinind.b | β’ π΅ = (Baseβπ ) |
lindslinind.0 | β’ 0 = (0gβπ ) |
lindslinind.z | β’ π = (0gβπ) |
lindslinind.y | β’ π = ((invgβπ )β(πβπ₯)) |
lindslinind.g | β’ πΊ = (π βΎ (π β {π₯})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8842 | . . . . . 6 β’ (π β (π΅ βm π) β π:πβΆπ΅) | |
2 | 1 | 3ad2ant3 1135 | . . . . 5 β’ ((π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π)) β π:πβΆπ΅) |
3 | 2 | adantl 482 | . . . 4 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β π:πβΆπ΅) |
4 | difss 4131 | . . . 4 β’ (π β {π₯}) β π | |
5 | fssres 6757 | . . . 4 β’ ((π:πβΆπ΅ β§ (π β {π₯}) β π) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) | |
6 | 3, 4, 5 | sylancl 586 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
7 | lindslinind.g | . . . 4 β’ πΊ = (π βΎ (π β {π₯})) | |
8 | 7 | feq1i 6708 | . . 3 β’ (πΊ:(π β {π₯})βΆπ΅ β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
9 | 6, 8 | sylibr 233 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ:(π β {π₯})βΆπ΅) |
10 | lindslinind.b | . . . 4 β’ π΅ = (Baseβπ ) | |
11 | 10 | fvexi 6905 | . . 3 β’ π΅ β V |
12 | difexg 5327 | . . . 4 β’ (π β π β (π β {π₯}) β V) | |
13 | 12 | ad2antrr 724 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π β {π₯}) β V) |
14 | elmapg 8832 | . . 3 β’ ((π΅ β V β§ (π β {π₯}) β V) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) | |
15 | 11, 13, 14 | sylancr 587 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) |
16 | 9, 15 | mpbird 256 | 1 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β cdif 3945 β wss 3948 {csn 4628 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7408 βm cmap 8819 Basecbs 17143 Scalarcsca 17199 0gc0g 17384 invgcminusg 18819 LModclmod 20470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 |
This theorem is referenced by: lindslinindimp2lem4 47132 lindslinindsimp2lem5 47133 |
Copyright terms: Public domain | W3C validator |