![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 44018. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → 𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8278 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → 𝑓:𝑆⟶𝐵) | |
2 | 1 | 3ad2ant3 1128 | . . . . 5 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆)) → 𝑓:𝑆⟶𝐵) |
3 | 2 | adantl 482 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → 𝑓:𝑆⟶𝐵) |
4 | difss 4029 | . . . 4 ⊢ (𝑆 ∖ {𝑥}) ⊆ 𝑆 | |
5 | fssres 6412 | . . . 4 ⊢ ((𝑓:𝑆⟶𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) | |
6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
7 | lindslinind.g | . . . 4 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
8 | 7 | feq1i 6373 | . . 3 ⊢ (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
9 | 6, 8 | sylibr 235 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵) |
10 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
11 | 10 | fvexi 6552 | . . 3 ⊢ 𝐵 ∈ V |
12 | difexg 5122 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | |
13 | 12 | ad2antrr 722 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V) |
14 | elmapg 8269 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) | |
15 | 11, 13, 14 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → (𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) |
16 | 9, 15 | mpbird 258 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → 𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∖ cdif 3856 ⊆ wss 3859 {csn 4472 ↾ cres 5445 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 Basecbs 16312 Scalarcsca 16397 0gc0g 16542 invgcminusg 17862 LModclmod 19324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-map 8258 |
This theorem is referenced by: lindslinindimp2lem4 44016 lindslinindsimp2lem5 44017 |
Copyright terms: Public domain | W3C validator |