Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem2 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem2 45800
Description: Lemma 2 for lindslinindsimp2 45804. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem2
StepHypRef Expression
1 elmapi 8637 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
213ad2ant3 1134 . . . . 5 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → 𝑓:𝑆𝐵)
32adantl 482 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑓:𝑆𝐵)
4 difss 4066 . . . 4 (𝑆 ∖ {𝑥}) ⊆ 𝑆
5 fssres 6640 . . . 4 ((𝑓:𝑆𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
63, 4, 5sylancl 586 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
7 lindslinind.g . . . 4 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
87feq1i 6591 . . 3 (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
96, 8sylibr 233 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)
10 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
1110fvexi 6788 . . 3 𝐵 ∈ V
12 difexg 5251 . . . 4 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
1312ad2antrr 723 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V)
14 elmapg 8628 . . 3 ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵))
1511, 13, 14sylancr 587 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵))
169, 15mpbird 256 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  invgcminusg 18578  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  lindslinindimp2lem4  45802  lindslinindsimp2lem5  45803
  Copyright terms: Public domain W3C validator