| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
| lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
| lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
| lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| Ref | Expression |
|---|---|
| lindslinindimp2lem2 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8783 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
| 2 | 1 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → 𝑓:𝑆⟶𝐵) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑓:𝑆⟶𝐵) |
| 4 | difss 4089 | . . . 4 ⊢ (𝑆 ∖ {𝑥}) ⊆ 𝑆 | |
| 5 | fssres 6694 | . . . 4 ⊢ ((𝑓:𝑆⟶𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) | |
| 6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
| 7 | lindslinind.g | . . . 4 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
| 8 | 7 | feq1i 6647 | . . 3 ⊢ (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
| 9 | 6, 8 | sylibr 234 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵) |
| 10 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | 10 | fvexi 6840 | . . 3 ⊢ 𝐵 ∈ V |
| 12 | difexg 5271 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | |
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V) |
| 14 | elmapg 8773 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) | |
| 15 | 11, 13, 14 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) |
| 16 | 9, 15 | mpbird 257 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Basecbs 17138 Scalarcsca 17182 0gc0g 17361 invgcminusg 18831 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: lindslinindimp2lem4 48450 lindslinindsimp2lem5 48451 |
| Copyright terms: Public domain | W3C validator |