![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 47643. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | β’ π = (Scalarβπ) |
lindslinind.b | β’ π΅ = (Baseβπ ) |
lindslinind.0 | β’ 0 = (0gβπ ) |
lindslinind.z | β’ π = (0gβπ) |
lindslinind.y | β’ π = ((invgβπ )β(πβπ₯)) |
lindslinind.g | β’ πΊ = (π βΎ (π β {π₯})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8866 | . . . . . 6 β’ (π β (π΅ βm π) β π:πβΆπ΅) | |
2 | 1 | 3ad2ant3 1132 | . . . . 5 β’ ((π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π)) β π:πβΆπ΅) |
3 | 2 | adantl 480 | . . . 4 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β π:πβΆπ΅) |
4 | difss 4129 | . . . 4 β’ (π β {π₯}) β π | |
5 | fssres 6761 | . . . 4 β’ ((π:πβΆπ΅ β§ (π β {π₯}) β π) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) | |
6 | 3, 4, 5 | sylancl 584 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
7 | lindslinind.g | . . . 4 β’ πΊ = (π βΎ (π β {π₯})) | |
8 | 7 | feq1i 6712 | . . 3 β’ (πΊ:(π β {π₯})βΆπ΅ β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
9 | 6, 8 | sylibr 233 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ:(π β {π₯})βΆπ΅) |
10 | lindslinind.b | . . . 4 β’ π΅ = (Baseβπ ) | |
11 | 10 | fvexi 6908 | . . 3 β’ π΅ β V |
12 | difexg 5329 | . . . 4 β’ (π β π β (π β {π₯}) β V) | |
13 | 12 | ad2antrr 724 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π β {π₯}) β V) |
14 | elmapg 8856 | . . 3 β’ ((π΅ β V β§ (π β {π₯}) β V) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) | |
15 | 11, 13, 14 | sylancr 585 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) |
16 | 9, 15 | mpbird 256 | 1 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3463 β cdif 3942 β wss 3945 {csn 4629 βΎ cres 5679 βΆwf 6543 βcfv 6547 (class class class)co 7417 βm cmap 8843 Basecbs 17179 Scalarcsca 17235 0gc0g 17420 invgcminusg 18895 LModclmod 20747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-map 8845 |
This theorem is referenced by: lindslinindimp2lem4 47641 lindslinindsimp2lem5 47642 |
Copyright terms: Public domain | W3C validator |