Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 45804. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8637 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
2 | 1 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → 𝑓:𝑆⟶𝐵) |
3 | 2 | adantl 482 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑓:𝑆⟶𝐵) |
4 | difss 4066 | . . . 4 ⊢ (𝑆 ∖ {𝑥}) ⊆ 𝑆 | |
5 | fssres 6640 | . . . 4 ⊢ ((𝑓:𝑆⟶𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) | |
6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
7 | lindslinind.g | . . . 4 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
8 | 7 | feq1i 6591 | . . 3 ⊢ (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
9 | 6, 8 | sylibr 233 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵) |
10 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
11 | 10 | fvexi 6788 | . . 3 ⊢ 𝐵 ∈ V |
12 | difexg 5251 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | |
13 | 12 | ad2antrr 723 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V) |
14 | elmapg 8628 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) | |
15 | 11, 13, 14 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) |
16 | 9, 15 | mpbird 256 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Basecbs 16912 Scalarcsca 16965 0gc0g 17150 invgcminusg 18578 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: lindslinindimp2lem4 45802 lindslinindsimp2lem5 45803 |
Copyright terms: Public domain | W3C validator |