Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem2 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem2 48448
Description: Lemma 2 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑀   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥   𝑓,𝑍   0 ,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem2
StepHypRef Expression
1 elmapi 8783 . . . . . 6 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
213ad2ant3 1135 . . . . 5 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆)) → 𝑓:𝑆𝐵)
32adantl 481 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑓:𝑆𝐵)
4 difss 4089 . . . 4 (𝑆 ∖ {𝑥}) ⊆ 𝑆
5 fssres 6694 . . . 4 ((𝑓:𝑆𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
63, 4, 5sylancl 586 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
7 lindslinind.g . . . 4 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
87feq1i 6647 . . 3 (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵)
96, 8sylibr 234 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)
10 lindslinind.b . . . 4 𝐵 = (Base‘𝑅)
1110fvexi 6840 . . 3 𝐵 ∈ V
12 difexg 5271 . . . 4 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
1312ad2antrr 726 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V)
14 elmapg 8773 . . 3 ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵))
1511, 13, 14sylancr 587 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵))
169, 15mpbird 257 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  wss 3905  {csn 4579  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Basecbs 17138  Scalarcsca 17182  0gc0g 17361  invgcminusg 18831  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by:  lindslinindimp2lem4  48450  lindslinindsimp2lem5  48451
  Copyright terms: Public domain W3C validator