![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 47454. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | β’ π = (Scalarβπ) |
lindslinind.b | β’ π΅ = (Baseβπ ) |
lindslinind.0 | β’ 0 = (0gβπ ) |
lindslinind.z | β’ π = (0gβπ) |
lindslinind.y | β’ π = ((invgβπ )β(πβπ₯)) |
lindslinind.g | β’ πΊ = (π βΎ (π β {π₯})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8859 | . . . . . 6 β’ (π β (π΅ βm π) β π:πβΆπ΅) | |
2 | 1 | 3ad2ant3 1133 | . . . . 5 β’ ((π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π)) β π:πβΆπ΅) |
3 | 2 | adantl 481 | . . . 4 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β π:πβΆπ΅) |
4 | difss 4127 | . . . 4 β’ (π β {π₯}) β π | |
5 | fssres 6757 | . . . 4 β’ ((π:πβΆπ΅ β§ (π β {π₯}) β π) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) | |
6 | 3, 4, 5 | sylancl 585 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
7 | lindslinind.g | . . . 4 β’ πΊ = (π βΎ (π β {π₯})) | |
8 | 7 | feq1i 6707 | . . 3 β’ (πΊ:(π β {π₯})βΆπ΅ β (π βΎ (π β {π₯})):(π β {π₯})βΆπ΅) |
9 | 6, 8 | sylibr 233 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ:(π β {π₯})βΆπ΅) |
10 | lindslinind.b | . . . 4 β’ π΅ = (Baseβπ ) | |
11 | 10 | fvexi 6905 | . . 3 β’ π΅ β V |
12 | difexg 5323 | . . . 4 β’ (π β π β (π β {π₯}) β V) | |
13 | 12 | ad2antrr 725 | . . 3 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (π β {π₯}) β V) |
14 | elmapg 8849 | . . 3 β’ ((π΅ β V β§ (π β {π₯}) β V) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) | |
15 | 11, 13, 14 | sylancr 586 | . 2 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β (πΊ β (π΅ βm (π β {π₯})) β πΊ:(π β {π₯})βΆπ΅)) |
16 | 9, 15 | mpbird 257 | 1 β’ (((π β π β§ π β LMod) β§ (π β (Baseβπ) β§ π₯ β π β§ π β (π΅ βm π))) β πΊ β (π΅ βm (π β {π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 Vcvv 3469 β cdif 3941 β wss 3944 {csn 4624 βΎ cres 5674 βΆwf 6538 βcfv 6542 (class class class)co 7414 βm cmap 8836 Basecbs 17171 Scalarcsca 17227 0gc0g 17412 invgcminusg 18882 LModclmod 20732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-map 8838 |
This theorem is referenced by: lindslinindimp2lem4 47452 lindslinindsimp2lem5 47453 |
Copyright terms: Public domain | W3C validator |