![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lindslinindsimp2 48309. (Contributed by AV, 25-Apr-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem2 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8888 | . . . . . 6 ⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | |
2 | 1 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → 𝑓:𝑆⟶𝐵) |
3 | 2 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑓:𝑆⟶𝐵) |
4 | difss 4146 | . . . 4 ⊢ (𝑆 ∖ {𝑥}) ⊆ 𝑆 | |
5 | fssres 6775 | . . . 4 ⊢ ((𝑓:𝑆⟶𝐵 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) | |
6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
7 | lindslinind.g | . . . 4 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
8 | 7 | feq1i 6728 | . . 3 ⊢ (𝐺:(𝑆 ∖ {𝑥})⟶𝐵 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})):(𝑆 ∖ {𝑥})⟶𝐵) |
9 | 6, 8 | sylibr 234 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺:(𝑆 ∖ {𝑥})⟶𝐵) |
10 | lindslinind.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
11 | 10 | fvexi 6921 | . . 3 ⊢ 𝐵 ∈ V |
12 | difexg 5335 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | |
13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝑆 ∖ {𝑥}) ∈ V) |
14 | elmapg 8878 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑆 ∖ {𝑥}) ∈ V) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) | |
15 | 11, 13, 14 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ↔ 𝐺:(𝑆 ∖ {𝑥})⟶𝐵)) |
16 | 9, 15 | mpbird 257 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 invgcminusg 18965 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 |
This theorem is referenced by: lindslinindimp2lem4 48307 lindslinindsimp2lem5 48308 |
Copyright terms: Public domain | W3C validator |