Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslinindimp2lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for lindslinindsimp2 45692. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lindslinind.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lindslinind.b | ⊢ 𝐵 = (Base‘𝑅) |
lindslinind.0 | ⊢ 0 = (0g‘𝑅) |
lindslinind.z | ⊢ 𝑍 = (0g‘𝑀) |
lindslinind.y | ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
lindslinind.g | ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
Ref | Expression |
---|---|
lindslinindimp2lem3 | ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindslinind.g | . 2 ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | |
2 | simp3r 1200 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝑓 finSupp 0 ) | |
3 | lindslinind.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 3 | fvexi 6770 | . . . 4 ⊢ 0 ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 0 ∈ V) |
6 | 2, 5 | fsuppres 9083 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp 0 ) |
7 | 1, 6 | eqbrtrid 5105 | 1 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 finSupp cfsupp 9058 Basecbs 16840 Scalarcsca 16891 0gc0g 17067 invgcminusg 18493 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: lindslinindimp2lem4 45690 |
Copyright terms: Public domain | W3C validator |