Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrcl Structured version   Visualization version   GIF version

Theorem lkrcl 39094
Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrcl.v 𝑉 = (Base‘𝑊)
lkrcl.f 𝐹 = (LFnl‘𝑊)
lkrcl.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrcl ((𝑊𝑌𝐺𝐹𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)

Proof of Theorem lkrcl
StepHypRef Expression
1 lkrcl.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2736 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrcl.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrcl.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5ellkr 39091 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
76simprbda 498 . 2 (((𝑊𝑌𝐺𝐹) ∧ 𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
873impa 1109 1 ((𝑊𝑌𝐺𝐹𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  Basecbs 17248  Scalarcsca 17301  0gc0g 17485  LFnlclfn 39059  LKerclk 39087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-lfl 39060  df-lkr 39088
This theorem is referenced by:  lkrlss  39097  lkrin  39166
  Copyright terms: Public domain W3C validator