Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrcl | Structured version Visualization version GIF version |
Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lkrcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrcl.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2736 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
4 | lkrcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | lkrcl.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
6 | 1, 2, 3, 4, 5 | ellkr 37356 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
7 | 6 | simprbda 499 | . 2 ⊢ (((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
8 | 7 | 3impa 1109 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 Basecbs 17009 Scalarcsca 17062 0gc0g 17247 LFnlclfn 37324 LKerclk 37352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-map 8688 df-lfl 37325 df-lkr 37353 |
This theorem is referenced by: lkrlss 37362 lkrin 37431 |
Copyright terms: Public domain | W3C validator |