![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrcl | Structured version Visualization version GIF version |
Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lkrcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrcl.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2779 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2779 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
4 | lkrcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | lkrcl.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
6 | 1, 2, 3, 4, 5 | ellkr 35667 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
7 | 6 | simprbda 491 | . 2 ⊢ (((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
8 | 7 | 3impa 1090 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 Basecbs 16339 Scalarcsca 16424 0gc0g 16569 LFnlclfn 35635 LKerclk 35663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-map 8208 df-lfl 35636 df-lkr 35664 |
This theorem is referenced by: lkrlss 35673 lkrin 35742 |
Copyright terms: Public domain | W3C validator |