Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrcl Structured version   Visualization version   GIF version

Theorem lkrcl 36843
Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrcl.v 𝑉 = (Base‘𝑊)
lkrcl.f 𝐹 = (LFnl‘𝑊)
lkrcl.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrcl ((𝑊𝑌𝐺𝐹𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)

Proof of Theorem lkrcl
StepHypRef Expression
1 lkrcl.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2737 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrcl.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrcl.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5ellkr 36840 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
76simprbda 502 . 2 (((𝑊𝑌𝐺𝐹) ∧ 𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
873impa 1112 1 ((𝑊𝑌𝐺𝐹𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  Basecbs 16760  Scalarcsca 16805  0gc0g 16944  LFnlclfn 36808  LKerclk 36836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-lfl 36809  df-lkr 36837
This theorem is referenced by:  lkrlss  36846  lkrin  36915
  Copyright terms: Public domain W3C validator