Step | Hyp | Ref
| Expression |
1 | | elin 3963 |
. . 3
β’ (π£ β ((πΎβπΊ) β© (πΎβπ»)) β (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) |
2 | | lkrin.w |
. . . . . . 7
β’ (π β π β LMod) |
3 | 2 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π β LMod) |
4 | | lkrin.e |
. . . . . . 7
β’ (π β πΊ β πΉ) |
5 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β πΊ β πΉ) |
6 | | simprl 769 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π£ β (πΎβπΊ)) |
7 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
8 | | lkrin.f |
. . . . . . 7
β’ πΉ = (LFnlβπ) |
9 | | lkrin.k |
. . . . . . 7
β’ πΎ = (LKerβπ) |
10 | 7, 8, 9 | lkrcl 37950 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ β§ π£ β (πΎβπΊ)) β π£ β (Baseβπ)) |
11 | 3, 5, 6, 10 | syl3anc 1371 |
. . . . 5
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π£ β (Baseβπ)) |
12 | | eqid 2732 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
13 | | eqid 2732 |
. . . . . . 7
β’
(+gβ(Scalarβπ)) =
(+gβ(Scalarβπ)) |
14 | | lkrin.d |
. . . . . . 7
β’ π· = (LDualβπ) |
15 | | lkrin.p |
. . . . . . 7
β’ + =
(+gβπ·) |
16 | | lkrin.g |
. . . . . . . 8
β’ (π β π» β πΉ) |
17 | 16 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π» β πΉ) |
18 | 7, 12, 13, 8, 14, 15, 3, 5, 17, 11 | ldualvaddval 37989 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β ((πΊ + π»)βπ£) = ((πΊβπ£)(+gβ(Scalarβπ))(π»βπ£))) |
19 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
20 | 12, 19, 8, 9 | lkrf0 37951 |
. . . . . . . 8
β’ ((π β LMod β§ πΊ β πΉ β§ π£ β (πΎβπΊ)) β (πΊβπ£) = (0gβ(Scalarβπ))) |
21 | 3, 5, 6, 20 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β (πΊβπ£) = (0gβ(Scalarβπ))) |
22 | | simprr 771 |
. . . . . . . 8
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π£ β (πΎβπ»)) |
23 | 12, 19, 8, 9 | lkrf0 37951 |
. . . . . . . 8
β’ ((π β LMod β§ π» β πΉ β§ π£ β (πΎβπ»)) β (π»βπ£) = (0gβ(Scalarβπ))) |
24 | 3, 17, 22, 23 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β (π»βπ£) = (0gβ(Scalarβπ))) |
25 | 21, 24 | oveq12d 7423 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β ((πΊβπ£)(+gβ(Scalarβπ))(π»βπ£)) =
((0gβ(Scalarβπ))(+gβ(Scalarβπ))(0gβ(Scalarβπ)))) |
26 | 12 | lmodring 20471 |
. . . . . . . . . 10
β’ (π β LMod β
(Scalarβπ) β
Ring) |
27 | 2, 26 | syl 17 |
. . . . . . . . 9
β’ (π β (Scalarβπ) β Ring) |
28 | | ringgrp 20054 |
. . . . . . . . 9
β’
((Scalarβπ)
β Ring β (Scalarβπ) β Grp) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
β’ (π β (Scalarβπ) β Grp) |
30 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
31 | 30, 19 | grpidcl 18846 |
. . . . . . . 8
β’
((Scalarβπ)
β Grp β (0gβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
32 | 30, 13, 19 | grplid 18848 |
. . . . . . . 8
β’
(((Scalarβπ)
β Grp β§ (0gβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β
((0gβ(Scalarβπ))(+gβ(Scalarβπ))(0gβ(Scalarβπ))) =
(0gβ(Scalarβπ))) |
33 | 29, 31, 32 | syl2anc2 585 |
. . . . . . 7
β’ (π β
((0gβ(Scalarβπ))(+gβ(Scalarβπ))(0gβ(Scalarβπ))) =
(0gβ(Scalarβπ))) |
34 | 33 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β
((0gβ(Scalarβπ))(+gβ(Scalarβπ))(0gβ(Scalarβπ))) =
(0gβ(Scalarβπ))) |
35 | 18, 25, 34 | 3eqtrd 2776 |
. . . . 5
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β ((πΊ + π»)βπ£) = (0gβ(Scalarβπ))) |
36 | 8, 14, 15, 2, 4, 16 | ldualvaddcl 37988 |
. . . . . . 7
β’ (π β (πΊ + π») β πΉ) |
37 | 36 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β (πΊ + π») β πΉ) |
38 | 7, 12, 19, 8, 9 | ellkr 37947 |
. . . . . 6
β’ ((π β LMod β§ (πΊ + π») β πΉ) β (π£ β (πΎβ(πΊ + π»)) β (π£ β (Baseβπ) β§ ((πΊ + π»)βπ£) = (0gβ(Scalarβπ))))) |
39 | 3, 37, 38 | syl2anc 584 |
. . . . 5
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β (π£ β (πΎβ(πΊ + π»)) β (π£ β (Baseβπ) β§ ((πΊ + π»)βπ£) = (0gβ(Scalarβπ))))) |
40 | 11, 35, 39 | mpbir2and 711 |
. . . 4
β’ ((π β§ (π£ β (πΎβπΊ) β§ π£ β (πΎβπ»))) β π£ β (πΎβ(πΊ + π»))) |
41 | 40 | ex 413 |
. . 3
β’ (π β ((π£ β (πΎβπΊ) β§ π£ β (πΎβπ»)) β π£ β (πΎβ(πΊ + π»)))) |
42 | 1, 41 | biimtrid 241 |
. 2
β’ (π β (π£ β ((πΎβπΊ) β© (πΎβπ»)) β π£ β (πΎβ(πΊ + π»)))) |
43 | 42 | ssrdv 3987 |
1
β’ (π β ((πΎβπΊ) β© (πΎβπ»)) β (πΎβ(πΊ + π»))) |