Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrin Structured version   Visualization version   GIF version

Theorem lkrin 39209
Description: Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lkrin.f 𝐹 = (LFnl‘𝑊)
lkrin.k 𝐾 = (LKer‘𝑊)
lkrin.d 𝐷 = (LDual‘𝑊)
lkrin.p + = (+g𝐷)
lkrin.w (𝜑𝑊 ∈ LMod)
lkrin.e (𝜑𝐺𝐹)
lkrin.g (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrin (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))

Proof of Theorem lkrin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elin 3918 . . 3 (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) ↔ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)))
2 lkrin.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑊 ∈ LMod)
4 lkrin.e . . . . . . 7 (𝜑𝐺𝐹)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐺𝐹)
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐺))
7 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
8 lkrin.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
9 lkrin.k . . . . . . 7 𝐾 = (LKer‘𝑊)
107, 8, 9lkrcl 39137 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (Base‘𝑊))
113, 5, 6, 10syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (Base‘𝑊))
12 eqid 2731 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
13 eqid 2731 . . . . . . 7 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
14 lkrin.d . . . . . . 7 𝐷 = (LDual‘𝑊)
15 lkrin.p . . . . . . 7 + = (+g𝐷)
16 lkrin.g . . . . . . . 8 (𝜑𝐻𝐹)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐻𝐹)
187, 12, 13, 8, 14, 15, 3, 5, 17, 11ldualvaddval 39176 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)))
19 eqid 2731 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
2012, 19, 8, 9lkrf0 39138 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
213, 5, 6, 20syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
22 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐻))
2312, 19, 8, 9lkrf0 39138 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑣 ∈ (𝐾𝐻)) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
243, 17, 22, 23syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
2521, 24oveq12d 7364 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
2612lmodring 20802 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
272, 26syl 17 . . . . . . . . 9 (𝜑 → (Scalar‘𝑊) ∈ Ring)
28 ringgrp 20157 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ Grp)
30 eqid 2731 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3130, 19grpidcl 18878 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3230, 13, 19grplid 18880 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3329, 31, 32syl2anc2 585 . . . . . . 7 (𝜑 → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3518, 25, 343eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))
368, 14, 15, 2, 4, 16ldualvaddcl 39175 . . . . . . 7 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
3736adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺 + 𝐻) ∈ 𝐹)
387, 12, 19, 8, 9ellkr 39134 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐺 + 𝐻) ∈ 𝐹) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
393, 37, 38syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
4011, 35, 39mpbir2and 713 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))
4140ex 412 . . 3 (𝜑 → ((𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
421, 41biimtrid 242 . 2 (𝜑 → (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
4342ssrdv 3940 1 (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3901  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  0gc0g 17343  Grpcgrp 18846  Ringcrg 20152  LModclmod 20794  LFnlclfn 39102  LKerclk 39130  LDualcld 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19695  df-abl 19696  df-mgp 20060  df-ur 20101  df-ring 20154  df-lmod 20796  df-lfl 39103  df-lkr 39131  df-ldual 39169
This theorem is referenced by:  lclkrlem2e  41556  lclkrlem2f  41557  lclkrlem2r  41569  lclkrlem2v  41573  lclkrslem2  41583  lcfrlem2  41588
  Copyright terms: Public domain W3C validator