Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrin Structured version   Visualization version   GIF version

Theorem lkrin 39164
Description: Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lkrin.f 𝐹 = (LFnl‘𝑊)
lkrin.k 𝐾 = (LKer‘𝑊)
lkrin.d 𝐷 = (LDual‘𝑊)
lkrin.p + = (+g𝐷)
lkrin.w (𝜑𝑊 ∈ LMod)
lkrin.e (𝜑𝐺𝐹)
lkrin.g (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrin (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))

Proof of Theorem lkrin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elin 3933 . . 3 (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) ↔ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)))
2 lkrin.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑊 ∈ LMod)
4 lkrin.e . . . . . . 7 (𝜑𝐺𝐹)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐺𝐹)
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐺))
7 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
8 lkrin.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
9 lkrin.k . . . . . . 7 𝐾 = (LKer‘𝑊)
107, 8, 9lkrcl 39092 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (Base‘𝑊))
113, 5, 6, 10syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (Base‘𝑊))
12 eqid 2730 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
13 eqid 2730 . . . . . . 7 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
14 lkrin.d . . . . . . 7 𝐷 = (LDual‘𝑊)
15 lkrin.p . . . . . . 7 + = (+g𝐷)
16 lkrin.g . . . . . . . 8 (𝜑𝐻𝐹)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐻𝐹)
187, 12, 13, 8, 14, 15, 3, 5, 17, 11ldualvaddval 39131 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)))
19 eqid 2730 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
2012, 19, 8, 9lkrf0 39093 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
213, 5, 6, 20syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
22 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐻))
2312, 19, 8, 9lkrf0 39093 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑣 ∈ (𝐾𝐻)) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
243, 17, 22, 23syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
2521, 24oveq12d 7408 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
2612lmodring 20781 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
272, 26syl 17 . . . . . . . . 9 (𝜑 → (Scalar‘𝑊) ∈ Ring)
28 ringgrp 20154 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ Grp)
30 eqid 2730 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3130, 19grpidcl 18904 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3230, 13, 19grplid 18906 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3329, 31, 32syl2anc2 585 . . . . . . 7 (𝜑 → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3518, 25, 343eqtrd 2769 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))
368, 14, 15, 2, 4, 16ldualvaddcl 39130 . . . . . . 7 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
3736adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺 + 𝐻) ∈ 𝐹)
387, 12, 19, 8, 9ellkr 39089 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐺 + 𝐻) ∈ 𝐹) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
393, 37, 38syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
4011, 35, 39mpbir2and 713 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))
4140ex 412 . . 3 (𝜑 → ((𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
421, 41biimtrid 242 . 2 (𝜑 → (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
4342ssrdv 3955 1 (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230  0gc0g 17409  Grpcgrp 18872  Ringcrg 20149  LModclmod 20773  LFnlclfn 39057  LKerclk 39085  LDualcld 39123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lfl 39058  df-lkr 39086  df-ldual 39124
This theorem is referenced by:  lclkrlem2e  41512  lclkrlem2f  41513  lclkrlem2r  41525  lclkrlem2v  41529  lclkrslem2  41539  lcfrlem2  41544
  Copyright terms: Public domain W3C validator