| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elin 3966 | . . 3
⊢ (𝑣 ∈ ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ↔ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) | 
| 2 |  | lkrin.w | . . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 3 | 2 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑊 ∈ LMod) | 
| 4 |  | lkrin.e | . . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| 5 | 4 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝐺 ∈ 𝐹) | 
| 6 |  | simprl 770 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘𝐺)) | 
| 7 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 8 |  | lkrin.f | . . . . . . 7
⊢ 𝐹 = (LFnl‘𝑊) | 
| 9 |  | lkrin.k | . . . . . . 7
⊢ 𝐾 = (LKer‘𝑊) | 
| 10 | 7, 8, 9 | lkrcl 39094 | . . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐺)) → 𝑣 ∈ (Base‘𝑊)) | 
| 11 | 3, 5, 6, 10 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (Base‘𝑊)) | 
| 12 |  | eqid 2736 | . . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 13 |  | eqid 2736 | . . . . . . 7
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) | 
| 14 |  | lkrin.d | . . . . . . 7
⊢ 𝐷 = (LDual‘𝑊) | 
| 15 |  | lkrin.p | . . . . . . 7
⊢  + =
(+g‘𝐷) | 
| 16 |  | lkrin.g | . . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ 𝐹) | 
| 17 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝐻 ∈ 𝐹) | 
| 18 | 7, 12, 13, 8, 14, 15, 3, 5, 17, 11 | ldualvaddval 39133 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺 + 𝐻)‘𝑣) = ((𝐺‘𝑣)(+g‘(Scalar‘𝑊))(𝐻‘𝑣))) | 
| 19 |  | eqid 2736 | . . . . . . . . 9
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) | 
| 20 | 12, 19, 8, 9 | lkrf0 39095 | . . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐺)) → (𝐺‘𝑣) = (0g‘(Scalar‘𝑊))) | 
| 21 | 3, 5, 6, 20 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐺‘𝑣) = (0g‘(Scalar‘𝑊))) | 
| 22 |  | simprr 772 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘𝐻)) | 
| 23 | 12, 19, 8, 9 | lkrf0 39095 | . . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐻)) → (𝐻‘𝑣) = (0g‘(Scalar‘𝑊))) | 
| 24 | 3, 17, 22, 23 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐻‘𝑣) = (0g‘(Scalar‘𝑊))) | 
| 25 | 21, 24 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺‘𝑣)(+g‘(Scalar‘𝑊))(𝐻‘𝑣)) =
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊)))) | 
| 26 | 12 | lmodring 20867 | . . . . . . . . . 10
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) | 
| 27 | 2, 26 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (Scalar‘𝑊) ∈ Ring) | 
| 28 |  | ringgrp 20236 | . . . . . . . . 9
⊢
((Scalar‘𝑊)
∈ Ring → (Scalar‘𝑊) ∈ Grp) | 
| 29 | 27, 28 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (Scalar‘𝑊) ∈ Grp) | 
| 30 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | 
| 31 | 30, 19 | grpidcl 18984 | . . . . . . . 8
⊢
((Scalar‘𝑊)
∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) | 
| 32 | 30, 13, 19 | grplid 18986 | . . . . . . . 8
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) | 
| 33 | 29, 31, 32 | syl2anc2 585 | . . . . . . 7
⊢ (𝜑 →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) | 
| 34 | 33 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) | 
| 35 | 18, 25, 34 | 3eqtrd 2780 | . . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))) | 
| 36 | 8, 14, 15, 2, 4, 16 | ldualvaddcl 39132 | . . . . . . 7
⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) | 
| 37 | 36 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐺 + 𝐻) ∈ 𝐹) | 
| 38 | 7, 12, 19, 8, 9 | ellkr 39091 | . . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐺 + 𝐻) ∈ 𝐹) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))))) | 
| 39 | 3, 37, 38 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))))) | 
| 40 | 11, 35, 39 | mpbir2and 713 | . . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))) | 
| 41 | 40 | ex 412 | . . 3
⊢ (𝜑 → ((𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))) | 
| 42 | 1, 41 | biimtrid 242 | . 2
⊢ (𝜑 → (𝑣 ∈ ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))) | 
| 43 | 42 | ssrdv 3988 | 1
⊢ (𝜑 → ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻))) |