Step | Hyp | Ref
| Expression |
1 | | elin 3903 |
. . 3
⊢ (𝑣 ∈ ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ↔ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) |
2 | | lkrin.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑊 ∈ LMod) |
4 | | lkrin.e |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝐺 ∈ 𝐹) |
6 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘𝐺)) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
8 | | lkrin.f |
. . . . . . 7
⊢ 𝐹 = (LFnl‘𝑊) |
9 | | lkrin.k |
. . . . . . 7
⊢ 𝐾 = (LKer‘𝑊) |
10 | 7, 8, 9 | lkrcl 37106 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐺)) → 𝑣 ∈ (Base‘𝑊)) |
11 | 3, 5, 6, 10 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (Base‘𝑊)) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) |
14 | | lkrin.d |
. . . . . . 7
⊢ 𝐷 = (LDual‘𝑊) |
15 | | lkrin.p |
. . . . . . 7
⊢ + =
(+g‘𝐷) |
16 | | lkrin.g |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝐻 ∈ 𝐹) |
18 | 7, 12, 13, 8, 14, 15, 3, 5, 17, 11 | ldualvaddval 37145 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺 + 𝐻)‘𝑣) = ((𝐺‘𝑣)(+g‘(Scalar‘𝑊))(𝐻‘𝑣))) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
20 | 12, 19, 8, 9 | lkrf0 37107 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐺)) → (𝐺‘𝑣) = (0g‘(Scalar‘𝑊))) |
21 | 3, 5, 6, 20 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐺‘𝑣) = (0g‘(Scalar‘𝑊))) |
22 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘𝐻)) |
23 | 12, 19, 8, 9 | lkrf0 37107 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐻)) → (𝐻‘𝑣) = (0g‘(Scalar‘𝑊))) |
24 | 3, 17, 22, 23 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐻‘𝑣) = (0g‘(Scalar‘𝑊))) |
25 | 21, 24 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺‘𝑣)(+g‘(Scalar‘𝑊))(𝐻‘𝑣)) =
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊)))) |
26 | 12 | lmodring 20131 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) |
27 | 2, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (Scalar‘𝑊) ∈ Ring) |
28 | | ringgrp 19788 |
. . . . . . . . 9
⊢
((Scalar‘𝑊)
∈ Ring → (Scalar‘𝑊) ∈ Grp) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (Scalar‘𝑊) ∈ Grp) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
31 | 30, 19 | grpidcl 18607 |
. . . . . . . 8
⊢
((Scalar‘𝑊)
∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
32 | 30, 13, 19 | grplid 18609 |
. . . . . . . 8
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) |
33 | 29, 31, 32 | syl2anc2 585 |
. . . . . . 7
⊢ (𝜑 →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) →
((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) |
35 | 18, 25, 34 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))) |
36 | 8, 14, 15, 2, 4, 16 | ldualvaddcl 37144 |
. . . . . . 7
⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) |
37 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝐺 + 𝐻) ∈ 𝐹) |
38 | 7, 12, 19, 8, 9 | ellkr 37103 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐺 + 𝐻) ∈ 𝐹) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))))) |
39 | 3, 37, 38 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊))))) |
40 | 11, 35, 39 | mpbir2and 710 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻))) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))) |
41 | 40 | ex 413 |
. . 3
⊢ (𝜑 → ((𝑣 ∈ (𝐾‘𝐺) ∧ 𝑣 ∈ (𝐾‘𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))) |
42 | 1, 41 | syl5bi 241 |
. 2
⊢ (𝜑 → (𝑣 ∈ ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))) |
43 | 42 | ssrdv 3927 |
1
⊢ (𝜑 → ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻))) |