Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrin Structured version   Visualization version   GIF version

Theorem lkrin 39187
Description: Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lkrin.f 𝐹 = (LFnl‘𝑊)
lkrin.k 𝐾 = (LKer‘𝑊)
lkrin.d 𝐷 = (LDual‘𝑊)
lkrin.p + = (+g𝐷)
lkrin.w (𝜑𝑊 ∈ LMod)
lkrin.e (𝜑𝐺𝐹)
lkrin.g (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrin (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))

Proof of Theorem lkrin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elin 3947 . . 3 (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) ↔ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)))
2 lkrin.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑊 ∈ LMod)
4 lkrin.e . . . . . . 7 (𝜑𝐺𝐹)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐺𝐹)
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐺))
7 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
8 lkrin.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
9 lkrin.k . . . . . . 7 𝐾 = (LKer‘𝑊)
107, 8, 9lkrcl 39115 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (Base‘𝑊))
113, 5, 6, 10syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (Base‘𝑊))
12 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
13 eqid 2736 . . . . . . 7 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
14 lkrin.d . . . . . . 7 𝐷 = (LDual‘𝑊)
15 lkrin.p . . . . . . 7 + = (+g𝐷)
16 lkrin.g . . . . . . . 8 (𝜑𝐻𝐹)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝐻𝐹)
187, 12, 13, 8, 14, 15, 3, 5, 17, 11ldualvaddval 39154 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)))
19 eqid 2736 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
2012, 19, 8, 9lkrf0 39116 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
213, 5, 6, 20syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺𝑣) = (0g‘(Scalar‘𝑊)))
22 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾𝐻))
2312, 19, 8, 9lkrf0 39116 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑣 ∈ (𝐾𝐻)) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
243, 17, 22, 23syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐻𝑣) = (0g‘(Scalar‘𝑊)))
2521, 24oveq12d 7428 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺𝑣)(+g‘(Scalar‘𝑊))(𝐻𝑣)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
2612lmodring 20830 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
272, 26syl 17 . . . . . . . . 9 (𝜑 → (Scalar‘𝑊) ∈ Ring)
28 ringgrp 20203 . . . . . . . . 9 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ Grp)
30 eqid 2736 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3130, 19grpidcl 18953 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3230, 13, 19grplid 18955 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3329, 31, 32syl2anc2 585 . . . . . . 7 (𝜑 → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
3518, 25, 343eqtrd 2775 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))
368, 14, 15, 2, 4, 16ldualvaddcl 39153 . . . . . . 7 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
3736adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝐺 + 𝐻) ∈ 𝐹)
387, 12, 19, 8, 9ellkr 39112 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐺 + 𝐻) ∈ 𝐹) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
393, 37, 38syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → (𝑣 ∈ (𝐾‘(𝐺 + 𝐻)) ↔ (𝑣 ∈ (Base‘𝑊) ∧ ((𝐺 + 𝐻)‘𝑣) = (0g‘(Scalar‘𝑊)))))
4011, 35, 39mpbir2and 713 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻))) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻)))
4140ex 412 . . 3 (𝜑 → ((𝑣 ∈ (𝐾𝐺) ∧ 𝑣 ∈ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
421, 41biimtrid 242 . 2 (𝜑 → (𝑣 ∈ ((𝐾𝐺) ∩ (𝐾𝐻)) → 𝑣 ∈ (𝐾‘(𝐺 + 𝐻))))
4342ssrdv 3969 1 (𝜑 → ((𝐾𝐺) ∩ (𝐾𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279  0gc0g 17458  Grpcgrp 18921  Ringcrg 20198  LModclmod 20822  LFnlclfn 39080  LKerclk 39108  LDualcld 39146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lfl 39081  df-lkr 39109  df-ldual 39147
This theorem is referenced by:  lclkrlem2e  41535  lclkrlem2f  41536  lclkrlem2r  41548  lclkrlem2v  41552  lclkrslem2  41562  lcfrlem2  41567
  Copyright terms: Public domain W3C validator