![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrf0 | Structured version Visualization version GIF version |
Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lkrf0.d | β’ π· = (Scalarβπ) |
lkrf0.o | β’ 0 = (0gβπ·) |
lkrf0.f | β’ πΉ = (LFnlβπ) |
lkrf0.k | β’ πΎ = (LKerβπ) |
Ref | Expression |
---|---|
lkrf0 | β’ ((π β π β§ πΊ β πΉ β§ π β (πΎβπΊ)) β (πΊβπ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | lkrf0.d | . . . 4 β’ π· = (Scalarβπ) | |
3 | lkrf0.o | . . . 4 β’ 0 = (0gβπ·) | |
4 | lkrf0.f | . . . 4 β’ πΉ = (LFnlβπ) | |
5 | lkrf0.k | . . . 4 β’ πΎ = (LKerβπ) | |
6 | 1, 2, 3, 4, 5 | ellkr 38463 | . . 3 β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β (π β (Baseβπ) β§ (πΊβπ) = 0 ))) |
7 | 6 | simplbda 499 | . 2 β’ (((π β π β§ πΊ β πΉ) β§ π β (πΎβπΊ)) β (πΊβπ) = 0 ) |
8 | 7 | 3impa 1107 | 1 β’ ((π β π β§ πΊ β πΉ β§ π β (πΎβπΊ)) β (πΊβπ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6534 Basecbs 17149 Scalarcsca 17205 0gc0g 17390 LFnlclfn 38431 LKerclk 38459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-lfl 38432 df-lkr 38460 |
This theorem is referenced by: lkrlss 38469 lkrshp 38479 lkrin 38538 lcfrlem12N 40929 |
Copyright terms: Public domain | W3C validator |