Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrf0 Structured version   Visualization version   GIF version

Theorem lkrf0 38467
Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrf0.d 𝐷 = (Scalarβ€˜π‘Š)
lkrf0.o 0 = (0gβ€˜π·)
lkrf0.f 𝐹 = (LFnlβ€˜π‘Š)
lkrf0.k 𝐾 = (LKerβ€˜π‘Š)
Assertion
Ref Expression
lkrf0 ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (πΎβ€˜πΊ)) β†’ (πΊβ€˜π‘‹) = 0 )

Proof of Theorem lkrf0
StepHypRef Expression
1 eqid 2724 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 lkrf0.d . . . 4 𝐷 = (Scalarβ€˜π‘Š)
3 lkrf0.o . . . 4 0 = (0gβ€˜π·)
4 lkrf0.f . . . 4 𝐹 = (LFnlβ€˜π‘Š)
5 lkrf0.k . . . 4 𝐾 = (LKerβ€˜π‘Š)
61, 2, 3, 4, 5ellkr 38463 . . 3 ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹) β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (𝑋 ∈ (Baseβ€˜π‘Š) ∧ (πΊβ€˜π‘‹) = 0 )))
76simplbda 499 . 2 (((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹) ∧ 𝑋 ∈ (πΎβ€˜πΊ)) β†’ (πΊβ€˜π‘‹) = 0 )
873impa 1107 1 ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (πΎβ€˜πΊ)) β†’ (πΊβ€˜π‘‹) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6534  Basecbs 17149  Scalarcsca 17205  0gc0g 17390  LFnlclfn 38431  LKerclk 38459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-lfl 38432  df-lkr 38460
This theorem is referenced by:  lkrlss  38469  lkrshp  38479  lkrin  38538  lcfrlem12N  40929
  Copyright terms: Public domain W3C validator