MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubid Structured version   Visualization version   GIF version

Theorem lmodsubid 20843
Description: Subtraction of a vector from itself. (hvsubid 30988 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsubeq0.v 𝑉 = (Base‘𝑊)
lmodsubeq0.o 0 = (0g𝑊)
lmodsubeq0.m = (-g𝑊)
Assertion
Ref Expression
lmodsubid ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝐴 𝐴) = 0 )

Proof of Theorem lmodsubid
StepHypRef Expression
1 lmodgrp 20788 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodsubeq0.v . . 3 𝑉 = (Base‘𝑊)
3 lmodsubeq0.o . . 3 0 = (0g𝑊)
4 lmodsubeq0.m . . 3 = (-g𝑊)
52, 3, 4grpsubid 18921 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑉) → (𝐴 𝐴) = 0 )
61, 5sylan 580 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝐴 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-lmod 20783
This theorem is referenced by:  lss0cl  20868  ttgbtwnid  28847
  Copyright terms: Public domain W3C validator