Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmelvali | Structured version Visualization version GIF version |
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmelval.a | ⊢ + = (+g‘𝐺) |
lsmelval.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvali | ⊢ (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 18760 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) |
3 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 3 | subgss 18756 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (Base‘𝐺)) |
6 | 3 | subgss 18756 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (Base‘𝐺)) |
8 | 2, 5, 7 | 3jca 1127 | . 2 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺))) |
9 | lsmelval.a | . . 3 ⊢ + = (+g‘𝐺) | |
10 | lsmelval.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
11 | 3, 9, 10 | lsmelvalix 19246 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
12 | 8, 11 | sylan 580 | 1 ⊢ (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 SubGrpcsubg 18749 LSSumclsm 19239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-subg 18752 df-lsm 19241 |
This theorem is referenced by: lsmsubg 19259 lsmmod 19281 lsmdisj2 19288 lsmhash 19311 ablfacrp 19669 lsmcl 20345 lsmelval2 20347 lsppreli 20352 lspprabs 20357 lspabs3 20383 pjthlem2 24602 lkrlsp 37116 dia2dimlem5 39082 mapdindp0 39733 hdmaprnlem3eN 39872 |
Copyright terms: Public domain | W3C validator |