MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvali Structured version   Visualization version   GIF version

Theorem lsmelvali 19631
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelval.a + = (+g𝐺)
lsmelval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvali (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))

Proof of Theorem lsmelvali
StepHypRef Expression
1 subgrcl 19114 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43subgss 19110 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
54adantr 480 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (Base‘𝐺))
63subgss 19110 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
76adantl 481 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (Base‘𝐺))
82, 5, 73jca 1128 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)))
9 lsmelval.a . . 3 + = (+g𝐺)
10 lsmelval.p . . 3 = (LSSum‘𝐺)
113, 9, 10lsmelvalix 19622 . 2 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
128, 11sylan 580 1 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916  SubGrpcsubg 19103  LSSumclsm 19615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-subg 19106  df-lsm 19617
This theorem is referenced by:  lsmsubg  19635  lsmmod  19656  lsmdisj2  19663  lsmhash  19686  ablfacrp  20049  lsmcl  21041  lsmelval2  21043  lsppreli  21048  lspprabs  21053  lspabs3  21082  pjthlem2  25390  lkrlsp  39120  dia2dimlem5  41087  mapdindp0  41738  hdmaprnlem3eN  41877
  Copyright terms: Public domain W3C validator