MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvali Structured version   Visualization version   GIF version

Theorem lsmelvali 19556
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelval.a + = (+g𝐺)
lsmelval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvali (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))

Proof of Theorem lsmelvali
StepHypRef Expression
1 subgrcl 19039 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43subgss 19035 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
54adantr 480 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (Base‘𝐺))
63subgss 19035 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
76adantl 481 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (Base‘𝐺))
82, 5, 73jca 1128 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)))
9 lsmelval.a . . 3 + = (+g𝐺)
10 lsmelval.p . . 3 = (LSSum‘𝐺)
113, 9, 10lsmelvalix 19547 . 2 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
128, 11sylan 580 1 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18841  SubGrpcsubg 19028  LSSumclsm 19540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-subg 19031  df-lsm 19542
This theorem is referenced by:  lsmsubg  19560  lsmmod  19581  lsmdisj2  19588  lsmhash  19611  ablfacrp  19974  lsmcl  20966  lsmelval2  20968  lsppreli  20973  lspprabs  20978  lspabs3  21007  pjthlem2  25314  lkrlsp  39068  dia2dimlem5  41035  mapdindp0  41686  hdmaprnlem3eN  41825
  Copyright terms: Public domain W3C validator