Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmssv | Structured version Visualization version GIF version |
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmssv | ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | lsmless2.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmvalx 19159 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
5 | simpl1 1189 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝐺 ∈ Mnd) | |
6 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
7 | 6 | sselda 3917 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
8 | 7 | adantrr 713 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
9 | simp3 1136 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
10 | 9 | sselda 3917 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝐵) |
11 | 10 | adantrl 712 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
12 | 1, 2 | mndcl 18308 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 5, 8, 11, 12 | syl3anc 1369 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | 13 | ralrimivva 3114 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
15 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) | |
16 | 15 | fmpo 7881 | . . . 4 ⊢ (∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
17 | 14, 16 | sylib 217 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
18 | 17 | frnd 6592 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ 𝐵) |
19 | 4, 18 | eqsstrd 3955 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 × cxp 5578 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 LSSumclsm 19154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-lsm 19156 |
This theorem is referenced by: lsmsubm 19173 lsmass 19190 lsmcntzr 19201 lsmsnorb 31481 ringlsmss 31485 lsmssass 31492 |
Copyright terms: Public domain | W3C validator |