MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssv Structured version   Visualization version   GIF version

Theorem lsmssv 19685
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmssv ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)

Proof of Theorem lsmssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmless2.v . . 3 𝐵 = (Base‘𝐺)
2 eqid 2740 . . 3 (+g𝐺) = (+g𝐺)
3 lsmless2.s . . 3 = (LSSum‘𝐺)
41, 2, 3lsmvalx 19681 . 2 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
5 simpl1 1191 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝐺 ∈ Mnd)
6 simp2 1137 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → 𝑇𝐵)
76sselda 4008 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ 𝑥𝑇) → 𝑥𝐵)
87adantrr 716 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝑥𝐵)
9 simp3 1138 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → 𝑈𝐵)
109sselda 4008 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ 𝑦𝑈) → 𝑦𝐵)
1110adantrl 715 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝑦𝐵)
121, 2mndcl 18780 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
135, 8, 11, 12syl3anc 1371 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
1413ralrimivva 3208 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → ∀𝑥𝑇𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
15 eqid 2740 . . . . 5 (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦))
1615fmpo 8109 . . . 4 (∀𝑥𝑇𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝐵 ↔ (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵)
1714, 16sylib 218 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵)
1817frnd 6755 . 2 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) ⊆ 𝐵)
194, 18eqsstrd 4047 1 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-lsm 19678
This theorem is referenced by:  lsmsubm  19695  lsmass  19711  lsmcntzr  19722  lsmsnorb  33384  ringlsmss  33388  lsmssass  33395
  Copyright terms: Public domain W3C validator