| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmssv | Structured version Visualization version GIF version | ||
| Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmssv | ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | lsmless2.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 1, 2, 3 | lsmvalx 19569 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 5 | simpl1 1192 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝐺 ∈ Mnd) | |
| 6 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
| 7 | 6 | sselda 3946 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
| 8 | 7 | adantrr 717 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
| 9 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
| 10 | 9 | sselda 3946 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝐵) |
| 11 | 10 | adantrl 716 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
| 12 | 1, 2 | mndcl 18669 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 13 | 5, 8, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 14 | 13 | ralrimivva 3180 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 15 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) | |
| 16 | 15 | fmpo 8047 | . . . 4 ⊢ (∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
| 17 | 14, 16 | sylib 218 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
| 18 | 17 | frnd 6696 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ 𝐵) |
| 19 | 4, 18 | eqsstrd 3981 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 × cxp 5636 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 LSSumclsm 19564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-lsm 19566 |
| This theorem is referenced by: lsmsubm 19583 lsmass 19599 lsmcntzr 19610 lsmsnorb 33362 ringlsmss 33366 lsmssass 33373 |
| Copyright terms: Public domain | W3C validator |