MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssv Structured version   Visualization version   GIF version

Theorem lsmssv 19676
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmssv ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)

Proof of Theorem lsmssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmless2.v . . 3 𝐵 = (Base‘𝐺)
2 eqid 2735 . . 3 (+g𝐺) = (+g𝐺)
3 lsmless2.s . . 3 = (LSSum‘𝐺)
41, 2, 3lsmvalx 19672 . 2 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
5 simpl1 1190 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝐺 ∈ Mnd)
6 simp2 1136 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → 𝑇𝐵)
76sselda 3995 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ 𝑥𝑇) → 𝑥𝐵)
87adantrr 717 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝑥𝐵)
9 simp3 1137 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → 𝑈𝐵)
109sselda 3995 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ 𝑦𝑈) → 𝑦𝐵)
1110adantrl 716 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → 𝑦𝐵)
121, 2mndcl 18768 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
135, 8, 11, 12syl3anc 1370 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇𝑦𝑈)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
1413ralrimivva 3200 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → ∀𝑥𝑇𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
15 eqid 2735 . . . . 5 (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦))
1615fmpo 8092 . . . 4 (∀𝑥𝑇𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝐵 ↔ (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵)
1714, 16sylib 218 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵)
1817frnd 6745 . 2 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) ⊆ 𝐵)
194, 18eqsstrd 4034 1 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963   × cxp 5687  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  Mndcmnd 18760  LSSumclsm 19667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-lsm 19669
This theorem is referenced by:  lsmsubm  19686  lsmass  19702  lsmcntzr  19713  lsmsnorb  33399  ringlsmss  33403  lsmssass  33410
  Copyright terms: Public domain W3C validator