Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmssv | Structured version Visualization version GIF version |
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmssv | ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | lsmless2.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmvalx 19311 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
5 | simpl1 1190 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝐺 ∈ Mnd) | |
6 | simp2 1136 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
7 | 6 | sselda 3930 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
8 | 7 | adantrr 714 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
9 | simp3 1137 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
10 | 9 | sselda 3930 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝐵) |
11 | 10 | adantrl 713 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
12 | 1, 2 | mndcl 18460 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 5, 8, 11, 12 | syl3anc 1370 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | 13 | ralrimivva 3194 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
15 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) | |
16 | 15 | fmpo 7951 | . . . 4 ⊢ (∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
17 | 14, 16 | sylib 217 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
18 | 17 | frnd 6643 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ 𝐵) |
19 | 4, 18 | eqsstrd 3968 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3896 × cxp 5603 ran crn 5606 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ∈ cmpo 7315 Basecbs 16979 +gcplusg 17029 Mndcmnd 18452 LSSumclsm 19306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-1st 7874 df-2nd 7875 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-lsm 19308 |
This theorem is referenced by: lsmsubm 19325 lsmass 19342 lsmcntzr 19353 lsmsnorb 31684 ringlsmss 31688 lsmssass 31695 |
Copyright terms: Public domain | W3C validator |