![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmssv | Structured version Visualization version GIF version |
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmssv | ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2772 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | lsmless2.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmvalx 18515 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
5 | simpl1 1171 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝐺 ∈ Mnd) | |
6 | simp2 1117 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
7 | 6 | sselda 3854 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
8 | 7 | adantrr 704 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝐵) |
9 | simp3 1118 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
10 | 9 | sselda 3854 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝐵) |
11 | 10 | adantrl 703 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝐵) |
12 | 1, 2 | mndcl 17759 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 5, 8, 11, 12 | syl3anc 1351 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | 13 | ralrimivva 3135 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
15 | eqid 2772 | . . . . 5 ⊢ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) | |
16 | 15 | fmpo 7567 | . . . 4 ⊢ (∀𝑥 ∈ 𝑇 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
17 | 14, 16 | sylib 210 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑇 × 𝑈)⟶𝐵) |
18 | 17 | frnd 6345 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ 𝐵) |
19 | 4, 18 | eqsstrd 3891 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 × cxp 5398 ran crn 5401 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ∈ cmpo 6972 Basecbs 16329 +gcplusg 16411 Mndcmnd 17752 LSSumclsm 18510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-lsm 18512 |
This theorem is referenced by: lsmsubm 18529 lsmass 18544 lsmcntzr 18554 |
Copyright terms: Public domain | W3C validator |