| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| lsspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lsspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lsspropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| lsspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lsspropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
| lsspropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| lsspropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
| lsspropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
| lsppropd.v1 | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| lsppropd.v2 | ⊢ (𝜑 → 𝐿 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| lsppropd | ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | lsspropd.b2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | 1, 2 | eqtr3d 2768 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | 3 | pweqd 4567 | . . 3 ⊢ (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿)) |
| 5 | lsspropd.w | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 6 | lsspropd.p | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 7 | lsspropd.s1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
| 8 | lsspropd.s2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 9 | lsspropd.p1 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | |
| 10 | lsspropd.p2 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | |
| 11 | 1, 2, 5, 6, 7, 8, 9, 10 | lsspropd 20949 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
| 12 | 11 | rabeqdv 3410 | . . . 4 ⊢ (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
| 13 | 12 | inteqd 4902 | . . 3 ⊢ (𝜑 → ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
| 14 | 4, 13 | mpteq12dv 5178 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 15 | lsppropd.v1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
| 16 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 17 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝐾) = (LSubSp‘𝐾) | |
| 18 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝐾) = (LSpan‘𝐾) | |
| 19 | 16, 17, 18 | lspfval 20904 | . . 3 ⊢ (𝐾 ∈ 𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
| 20 | 15, 19 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
| 21 | lsppropd.v2 | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑌) | |
| 22 | eqid 2731 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 23 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
| 24 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝐿) = (LSpan‘𝐿) | |
| 25 | 22, 23, 24 | lspfval 20904 | . . 3 ⊢ (𝐿 ∈ 𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 26 | 21, 25 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 27 | 14, 20, 26 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 𝒫 cpw 4550 ∩ cint 4897 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Scalarcsca 17161 ·𝑠 cvsca 17162 LSubSpclss 20862 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-lss 20863 df-lsp 20903 |
| This theorem is referenced by: lbspropd 21031 lidlrsppropd 21179 lindfpropd 33342 |
| Copyright terms: Public domain | W3C validator |