![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
Ref | Expression |
---|---|
lsspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lsspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lsspropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lsspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lsspropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
lsspropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lsspropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
lsspropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
lsppropd.v1 | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
lsppropd.v2 | ⊢ (𝜑 → 𝐿 ∈ 𝑌) |
Ref | Expression |
---|---|
lsppropd | ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsspropd.b1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lsspropd.b2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | 1, 2 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | 3 | pweqd 4639 | . . 3 ⊢ (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿)) |
5 | lsspropd.w | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
6 | lsspropd.p | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
7 | lsspropd.s1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
8 | lsspropd.s2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
9 | lsspropd.p1 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | |
10 | lsspropd.p2 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | |
11 | 1, 2, 5, 6, 7, 8, 9, 10 | lsspropd 21039 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
12 | 11 | rabeqdv 3459 | . . . 4 ⊢ (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
13 | 12 | inteqd 4975 | . . 3 ⊢ (𝜑 → ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
14 | 4, 13 | mpteq12dv 5257 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
15 | lsppropd.v1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
16 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
17 | eqid 2740 | . . . 4 ⊢ (LSubSp‘𝐾) = (LSubSp‘𝐾) | |
18 | eqid 2740 | . . . 4 ⊢ (LSpan‘𝐾) = (LSpan‘𝐾) | |
19 | 16, 17, 18 | lspfval 20994 | . . 3 ⊢ (𝐾 ∈ 𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
20 | 15, 19 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
21 | lsppropd.v2 | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝑌) | |
22 | eqid 2740 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
23 | eqid 2740 | . . . 4 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
24 | eqid 2740 | . . . 4 ⊢ (LSpan‘𝐿) = (LSpan‘𝐿) | |
25 | 22, 23, 24 | lspfval 20994 | . . 3 ⊢ (𝐿 ∈ 𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
26 | 21, 25 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
27 | 14, 20, 26 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: lbspropd 21121 lidlrsppropd 21277 lindfpropd 33375 |
Copyright terms: Public domain | W3C validator |