MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppropd Structured version   Visualization version   GIF version

Theorem lsppropd 20195
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsspropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsspropd.w (𝜑𝐵𝑊)
lsspropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsspropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
lsspropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lsspropd.p1 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
lsspropd.p2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
lsppropd.v1 (𝜑𝐾𝑋)
lsppropd.v2 (𝜑𝐿𝑌)
Assertion
Ref Expression
lsppropd (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lsppropd
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lsspropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2780 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
43pweqd 4549 . . 3 (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿))
5 lsspropd.w . . . . . 6 (𝜑𝐵𝑊)
6 lsspropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 lsspropd.s1 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
8 lsspropd.s2 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
9 lsspropd.p1 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
10 lsspropd.p2 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
111, 2, 5, 6, 7, 8, 9, 10lsspropd 20194 . . . . 5 (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿))
1211rabeqdv 3409 . . . 4 (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
1312inteqd 4881 . . 3 (𝜑 {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
144, 13mpteq12dv 5161 . 2 (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
15 lsppropd.v1 . . 3 (𝜑𝐾𝑋)
16 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2738 . . . 4 (LSubSp‘𝐾) = (LSubSp‘𝐾)
18 eqid 2738 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
1916, 17, 18lspfval 20150 . . 3 (𝐾𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
2015, 19syl 17 . 2 (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
21 lsppropd.v2 . . 3 (𝜑𝐿𝑌)
22 eqid 2738 . . . 4 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2738 . . . 4 (LSubSp‘𝐿) = (LSubSp‘𝐿)
24 eqid 2738 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
2522, 23, 24lspfval 20150 . . 3 (𝐿𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2621, 25syl 17 . 2 (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2714, 20, 263eqtr4d 2788 1 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883  𝒫 cpw 4530   cint 4876  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-lss 20109  df-lsp 20149
This theorem is referenced by:  lbspropd  20276  lidlrsppropd  20414  lindfpropd  31478
  Copyright terms: Public domain W3C validator