MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppropd Structured version   Visualization version   GIF version

Theorem lsppropd 20981
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsspropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsspropd.w (𝜑𝐵𝑊)
lsspropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsspropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
lsspropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lsspropd.p1 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
lsspropd.p2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
lsppropd.v1 (𝜑𝐾𝑋)
lsppropd.v2 (𝜑𝐿𝑌)
Assertion
Ref Expression
lsppropd (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lsppropd
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lsspropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2773 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
43pweqd 4597 . . 3 (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿))
5 lsspropd.w . . . . . 6 (𝜑𝐵𝑊)
6 lsspropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 lsspropd.s1 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
8 lsspropd.s2 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
9 lsspropd.p1 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
10 lsspropd.p2 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
111, 2, 5, 6, 7, 8, 9, 10lsspropd 20980 . . . . 5 (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿))
1211rabeqdv 3436 . . . 4 (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
1312inteqd 4932 . . 3 (𝜑 {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
144, 13mpteq12dv 5212 . 2 (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
15 lsppropd.v1 . . 3 (𝜑𝐾𝑋)
16 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2736 . . . 4 (LSubSp‘𝐾) = (LSubSp‘𝐾)
18 eqid 2736 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
1916, 17, 18lspfval 20935 . . 3 (𝐾𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
2015, 19syl 17 . 2 (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
21 lsppropd.v2 . . 3 (𝜑𝐿𝑌)
22 eqid 2736 . . . 4 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2736 . . . 4 (LSubSp‘𝐿) = (LSubSp‘𝐿)
24 eqid 2736 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
2522, 23, 24lspfval 20935 . . 3 (𝐿𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2621, 25syl 17 . 2 (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2714, 20, 263eqtr4d 2781 1 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  wss 3931  𝒫 cpw 4580   cint 4927  cmpt 5206  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  LSubSpclss 20893  LSpanclspn 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-lss 20894  df-lsp 20934
This theorem is referenced by:  lbspropd  21062  lidlrsppropd  21210  lindfpropd  33402
  Copyright terms: Public domain W3C validator