![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lsspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lsspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lsspropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lsspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lsspropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
lsspropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lsspropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
lsspropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
lsspropd.v1 | ⊢ (𝜑 → 𝐾 ∈ V) |
lsspropd.v2 | ⊢ (𝜑 → 𝐿 ∈ V) |
Ref | Expression |
---|---|
lsppropd | ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsspropd.b1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lsspropd.b2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | 1, 2 | eqtr3d 2815 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | 3 | pweqd 4383 | . . 3 ⊢ (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿)) |
5 | lsspropd.w | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
6 | lsspropd.p | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
7 | lsspropd.s1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
8 | lsspropd.s2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
9 | lsspropd.p1 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | |
10 | lsspropd.p2 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | |
11 | 1, 2, 5, 6, 7, 8, 9, 10 | lsspropd 19412 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
12 | rabeq 3388 | . . . . 5 ⊢ ((LSubSp‘𝐾) = (LSubSp‘𝐿) → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
14 | 13 | inteqd 4715 | . . 3 ⊢ (𝜑 → ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
15 | 4, 14 | mpteq12dv 4969 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
16 | lsspropd.v1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) | |
17 | eqid 2777 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2777 | . . . 4 ⊢ (LSubSp‘𝐾) = (LSubSp‘𝐾) | |
19 | eqid 2777 | . . . 4 ⊢ (LSpan‘𝐾) = (LSpan‘𝐾) | |
20 | 17, 18, 19 | lspfval 19368 | . . 3 ⊢ (𝐾 ∈ V → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
21 | 16, 20 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
22 | lsspropd.v2 | . . 3 ⊢ (𝜑 → 𝐿 ∈ V) | |
23 | eqid 2777 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
24 | eqid 2777 | . . . 4 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
25 | eqid 2777 | . . . 4 ⊢ (LSpan‘𝐿) = (LSpan‘𝐿) | |
26 | 23, 24, 25 | lspfval 19368 | . . 3 ⊢ (𝐿 ∈ V → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
27 | 22, 26 | syl 17 | . 2 ⊢ (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
28 | 15, 21, 27 | 3eqtr4d 2823 | 1 ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 {crab 3093 Vcvv 3397 ⊆ wss 3791 𝒫 cpw 4378 ∩ cint 4710 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 Scalarcsca 16341 ·𝑠 cvsca 16342 LSubSpclss 19324 LSpanclspn 19366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-lss 19325 df-lsp 19367 |
This theorem is referenced by: lbspropd 19494 lidlrsppropd 19627 |
Copyright terms: Public domain | W3C validator |