MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppropd Structured version   Visualization version   GIF version

Theorem lsppropd 19783
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsspropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsspropd.w (𝜑𝐵𝑊)
lsspropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsspropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
lsspropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lsspropd.p1 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
lsspropd.p2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
lsppropd.v1 (𝜑𝐾𝑋)
lsppropd.v2 (𝜑𝐿𝑌)
Assertion
Ref Expression
lsppropd (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lsppropd
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lsspropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2835 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
43pweqd 4516 . . 3 (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿))
5 lsspropd.w . . . . . 6 (𝜑𝐵𝑊)
6 lsspropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 lsspropd.s1 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
8 lsspropd.s2 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
9 lsspropd.p1 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
10 lsspropd.p2 . . . . . 6 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
111, 2, 5, 6, 7, 8, 9, 10lsspropd 19782 . . . . 5 (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿))
1211rabeqdv 3432 . . . 4 (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
1312inteqd 4843 . . 3 (𝜑 {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡})
144, 13mpteq12dv 5115 . 2 (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
15 lsppropd.v1 . . 3 (𝜑𝐾𝑋)
16 eqid 2798 . . . 4 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2798 . . . 4 (LSubSp‘𝐾) = (LSubSp‘𝐾)
18 eqid 2798 . . . 4 (LSpan‘𝐾) = (LSpan‘𝐾)
1916, 17, 18lspfval 19738 . . 3 (𝐾𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
2015, 19syl 17 . 2 (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠𝑡}))
21 lsppropd.v2 . . 3 (𝜑𝐿𝑌)
22 eqid 2798 . . . 4 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2798 . . . 4 (LSubSp‘𝐿) = (LSubSp‘𝐿)
24 eqid 2798 . . . 4 (LSpan‘𝐿) = (LSpan‘𝐿)
2522, 23, 24lspfval 19738 . . 3 (𝐿𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2621, 25syl 17 . 2 (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠𝑡}))
2714, 20, 263eqtr4d 2843 1 (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  wss 3881  𝒫 cpw 4497   cint 4838  cmpt 5110  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  LSubSpclss 19696  LSpanclspn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-lss 19697  df-lsp 19737
This theorem is referenced by:  lbspropd  19864  lidlrsppropd  19996  lindfpropd  30996
  Copyright terms: Public domain W3C validator