Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncvr Structured version   Visualization version   GIF version

Theorem ltrncvr 39606
Description: Covering property of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrncvr.b 𝐵 = (Base‘𝐾)
ltrncvr.c 𝐶 = ( ⋖ ‘𝐾)
ltrncvr.h 𝐻 = (LHyp‘𝐾)
ltrncvr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncvr (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))

Proof of Theorem ltrncvr
StepHypRef Expression
1 simp1l 1195 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾𝑉)
2 ltrncvr.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2728 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrncvr.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 39596 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1130 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
7 simp3l 1199 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
8 simp3r 1200 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
9 ltrncvr.b . . 3 𝐵 = (Base‘𝐾)
10 ltrncvr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
119, 10, 3lautcvr 39565 . 2 ((𝐾𝑉 ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))
121, 6, 7, 8, 11syl13anc 1370 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  Basecbs 17180  ccvr 38734  LHypclh 39457  LAutclaut 39458  LTrncltrn 39574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-plt 18322  df-covers 38738  df-laut 39462  df-ldil 39577  df-ltrn 39578
This theorem is referenced by:  ltrnatb  39610
  Copyright terms: Public domain W3C validator