![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncvr | Structured version Visualization version GIF version |
Description: Covering property of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrncvr.b | β’ π΅ = (BaseβπΎ) |
ltrncvr.c | β’ πΆ = ( β βπΎ) |
ltrncvr.h | β’ π» = (LHypβπΎ) |
ltrncvr.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrncvr | β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1194 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β πΎ β π) | |
2 | ltrncvr.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | eqid 2724 | . . . 4 β’ (LAutβπΎ) = (LAutβπΎ) | |
4 | ltrncvr.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | 2, 3, 4 | ltrnlaut 39450 | . . 3 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β (LAutβπΎ)) |
6 | 5 | 3adant3 1129 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β πΉ β (LAutβπΎ)) |
7 | simp3l 1198 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
8 | simp3r 1199 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
9 | ltrncvr.b | . . 3 β’ π΅ = (BaseβπΎ) | |
10 | ltrncvr.c | . . 3 β’ πΆ = ( β βπΎ) | |
11 | 9, 10, 3 | lautcvr 39419 | . 2 β’ ((πΎ β π β§ (πΉ β (LAutβπΎ) β§ π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) |
12 | 1, 6, 7, 8, 11 | syl13anc 1369 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 Basecbs 17140 β ccvr 38588 LHypclh 39311 LAutclaut 39312 LTrncltrn 39428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-plt 18282 df-covers 38592 df-laut 39316 df-ldil 39431 df-ltrn 39432 |
This theorem is referenced by: ltrnatb 39464 |
Copyright terms: Public domain | W3C validator |