![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnj | Structured version Visualization version GIF version |
Description: Lattice translation of a meet. TODO: change antecedent to 𝐾 ∈ HL (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnj.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnj.j | ⊢ ∨ = (join‘𝐾) |
ltrnj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnj.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnj | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1258 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 35434 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ Lat) |
3 | ltrnj.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | eqid 2825 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
5 | ltrnj.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 3, 4, 5 | ltrnlaut 36193 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
7 | 6 | 3adant3 1166 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹 ∈ (LAut‘𝐾)) |
8 | simp3l 1262 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
9 | simp3r 1263 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
10 | ltrnj.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
11 | ltrnj.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
12 | 10, 11, 4 | lautj 36163 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
13 | 2, 7, 8, 9, 12 | syl13anc 1495 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 joincjn 17304 Latclat 17405 HLchlt 35420 LHypclh 36054 LAutclaut 36055 LTrncltrn 36171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-map 8129 df-proset 17288 df-poset 17306 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-lat 17406 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-laut 36059 df-ldil 36174 df-ltrn 36175 |
This theorem is referenced by: cdlemc2 36262 cdlemd2 36269 cdlemg2l 36673 cdlemg17h 36738 cdlemg17 36747 |
Copyright terms: Public domain | W3C validator |