Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnj Structured version   Visualization version   GIF version

Theorem ltrnj 36202
Description: Lattice translation of a meet. TODO: change antecedent to 𝐾 ∈ HL (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
ltrnj.b 𝐵 = (Base‘𝐾)
ltrnj.j = (join‘𝐾)
ltrnj.h 𝐻 = (LHyp‘𝐾)
ltrnj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnj (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem ltrnj
StepHypRef Expression
1 simp1l 1258 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
21hllatd 35434 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
3 ltrnj.h . . . 4 𝐻 = (LHyp‘𝐾)
4 eqid 2825 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
5 ltrnj.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrnlaut 36193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
763adant3 1166 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
8 simp3l 1262 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
9 simp3r 1263 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
10 ltrnj.b . . 3 𝐵 = (Base‘𝐾)
11 ltrnj.j . . 3 = (join‘𝐾)
1210, 11, 4lautj 36163 . 2 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
132, 7, 8, 9, 12syl13anc 1495 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  Basecbs 16229  joincjn 17304  Latclat 17405  HLchlt 35420  LHypclh 36054  LAutclaut 36055  LTrncltrn 36171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-map 8129  df-proset 17288  df-poset 17306  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-lat 17406  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-laut 36059  df-ldil 36174  df-ltrn 36175
This theorem is referenced by:  cdlemc2  36262  cdlemd2  36269  cdlemg2l  36673  cdlemg17h  36738  cdlemg17  36747
  Copyright terms: Public domain W3C validator