Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Structured version   Visualization version   GIF version

Theorem ltrneq2 40320
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a 𝐴 = (Atoms‘𝐾)
ltrneq2.h 𝐻 = (LHyp‘𝐾)
ltrneq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝑇(𝑝)   𝐻(𝑝)   𝐾(𝑝)   𝑊(𝑝)

Proof of Theorem ltrneq2
Dummy variables 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1194 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺𝑇)
3 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
4 ltrneq2.h . . . . . . . . . . . . . . 15 𝐻 = (LHyp‘𝐾)
5 ltrneq2.t . . . . . . . . . . . . . . 15 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 40296 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹𝑇)
9 simpr3 1197 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞𝐴)
10 eqid 2733 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
11 ltrneq2.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrncnvat 40313 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞𝐴) → (𝐹𝑞) ∈ 𝐴)
131, 8, 9, 12syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ 𝐴)
143, 11atbase 39461 . . . . . . . . . . . . . 14 ((𝐹𝑞) ∈ 𝐴 → (𝐹𝑞) ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ (Base‘𝐾))
16 f1ocnvfv1 7219 . . . . . . . . . . . . 13 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (𝐹𝑞) ∈ (Base‘𝐾)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
177, 15, 16syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
18 simpr2 1196 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
19 fveq2 6831 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐹𝑝) = (𝐹‘(𝐹𝑞)))
20 fveq2 6831 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐺𝑝) = (𝐺‘(𝐹𝑞)))
2119, 20eqeq12d 2749 . . . . . . . . . . . . . . . 16 (𝑝 = (𝐹𝑞) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2221rspcv 3569 . . . . . . . . . . . . . . 15 ((𝐹𝑞) ∈ 𝐴 → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2313, 18, 22sylc 65 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞)))
243, 4, 5ltrn1o 40296 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
251, 8, 24syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
263, 11atbase 39461 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
279, 26syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
28 f1ocnvfv2 7220 . . . . . . . . . . . . . . 15 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
2925, 27, 28syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = 𝑞)
3023, 29eqtr3d 2770 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐹𝑞)) = 𝑞)
3130fveq2d 6835 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐺𝑞))
3217, 31eqtr3d 2770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) = (𝐺𝑞))
3332breq1d 5105 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)𝑥 ↔ (𝐺𝑞)(le‘𝐾)𝑥))
34 simpr1 1195 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑥 ∈ (Base‘𝐾))
35 f1ocnvfv1 7219 . . . . . . . . . . . 12 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3625, 34, 35syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3736breq2d 5107 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐹𝑞)(le‘𝐾)𝑥))
38 f1ocnvfv1 7219 . . . . . . . . . . . 12 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘(𝐺𝑥)) = 𝑥)
397, 34, 38syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺𝑥)) = 𝑥)
4039breq2d 5107 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥)) ↔ (𝐺𝑞)(le‘𝐾)𝑥))
4133, 37, 403bitr4d 311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
42 simpl1l 1225 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐾 ∈ HL)
43 eqid 2733 . . . . . . . . . . . 12 (LAut‘𝐾) = (LAut‘𝐾)
444, 43, 5ltrnlaut 40295 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
451, 8, 44syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹 ∈ (LAut‘𝐾))
463, 4, 5ltrncl 40297 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
471, 8, 34, 46syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑥) ∈ (Base‘𝐾))
483, 10, 43lautcnvle 40261 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐹𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
4942, 45, 27, 47, 48syl22anc 838 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
504, 43, 5ltrnlaut 40295 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ (LAut‘𝐾))
511, 2, 50syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺 ∈ (LAut‘𝐾))
523, 4, 5ltrncl 40297 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
531, 2, 34, 52syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺𝑥) ∈ (Base‘𝐾))
543, 10, 43lautcnvle 40261 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐺 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5542, 51, 27, 53, 54syl22anc 838 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5641, 49, 553bitr4d 311 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))
57563exp2 1355 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑥 ∈ (Base‘𝐾) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))))
5857imp 406 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))))
5958ralrimdv 3131 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))
60 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
61 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
62 simpl2 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐹𝑇)
63 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
6461, 62, 63, 46syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
65 simpl3 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐺𝑇)
6661, 65, 63, 52syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
673, 10, 11hlateq 39571 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6860, 64, 66, 67syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6959, 68sylibd 239 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹𝑥) = (𝐺𝑥)))
7069ralrimdva 3133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
71243adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
72 f1ofn 6772 . . . . 5 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹 Fn (Base‘𝐾))
7371, 72syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 Fn (Base‘𝐾))
7463adant2 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
75 f1ofn 6772 . . . . 5 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺 Fn (Base‘𝐾))
7674, 75syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 Fn (Base‘𝐾))
77 eqfnfv 6973 . . . 4 ((𝐹 Fn (Base‘𝐾) ∧ 𝐺 Fn (Base‘𝐾)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7873, 76, 77syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7970, 78sylibrd 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → 𝐹 = 𝐺))
80 fveq1 6830 . . 3 (𝐹 = 𝐺 → (𝐹𝑝) = (𝐺𝑝))
8180ralrimivw 3129 . 2 (𝐹 = 𝐺 → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
8279, 81impbid1 225 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  ccnv 5620   Fn wfn 6484  1-1-ontowf1o 6488  cfv 6489  Basecbs 17127  lecple 17175  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LAutclaut 40157  LTrncltrn 40273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277
This theorem is referenced by:  ltrneq  40321  cdlemd  40379
  Copyright terms: Public domain W3C validator