Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl3 1192 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐺 ∈ 𝑇) |
3 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | ltrneq2.h |
. . . . . . . . . . . . . . 15
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | ltrneq2.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | 3, 4, 5 | ltrn1o 38138 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
7 | 1, 2, 6 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
8 | | simpl2 1191 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐹 ∈ 𝑇) |
9 | | simpr3 1195 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐴) |
10 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(le‘𝐾) =
(le‘𝐾) |
11 | | ltrneq2.a |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = (Atoms‘𝐾) |
12 | 10, 11, 4, 5 | ltrncnvat 38155 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑞 ∈ 𝐴) → (◡𝐹‘𝑞) ∈ 𝐴) |
13 | 1, 8, 9, 12 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐹‘𝑞) ∈ 𝐴) |
14 | 3, 11 | atbase 37303 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹‘𝑞) ∈ 𝐴 → (◡𝐹‘𝑞) ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐹‘𝑞) ∈ (Base‘𝐾)) |
16 | | f1ocnvfv1 7148 |
. . . . . . . . . . . . 13
⊢ ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (◡𝐹‘𝑞) ∈ (Base‘𝐾)) → (◡𝐺‘(𝐺‘(◡𝐹‘𝑞))) = (◡𝐹‘𝑞)) |
17 | 7, 15, 16 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐺‘(𝐺‘(◡𝐹‘𝑞))) = (◡𝐹‘𝑞)) |
18 | | simpr2 1194 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝)) |
19 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (◡𝐹‘𝑞) → (𝐹‘𝑝) = (𝐹‘(◡𝐹‘𝑞))) |
20 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (◡𝐹‘𝑞) → (𝐺‘𝑝) = (𝐺‘(◡𝐹‘𝑞))) |
21 | 19, 20 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (◡𝐹‘𝑞) → ((𝐹‘𝑝) = (𝐺‘𝑝) ↔ (𝐹‘(◡𝐹‘𝑞)) = (𝐺‘(◡𝐹‘𝑞)))) |
22 | 21 | rspcv 3557 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹‘𝑞) ∈ 𝐴 → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → (𝐹‘(◡𝐹‘𝑞)) = (𝐺‘(◡𝐹‘𝑞)))) |
23 | 13, 18, 22 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐹‘(◡𝐹‘𝑞)) = (𝐺‘(◡𝐹‘𝑞))) |
24 | 3, 4, 5 | ltrn1o 38138 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
25 | 1, 8, 24 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
26 | 3, 11 | atbase 37303 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
27 | 9, 26 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
28 | | f1ocnvfv2 7149 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(◡𝐹‘𝑞)) = 𝑞) |
29 | 25, 27, 28 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐹‘(◡𝐹‘𝑞)) = 𝑞) |
30 | 23, 29 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐺‘(◡𝐹‘𝑞)) = 𝑞) |
31 | 30 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐺‘(𝐺‘(◡𝐹‘𝑞))) = (◡𝐺‘𝑞)) |
32 | 17, 31 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐹‘𝑞) = (◡𝐺‘𝑞)) |
33 | 32 | breq1d 5084 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → ((◡𝐹‘𝑞)(le‘𝐾)𝑥 ↔ (◡𝐺‘𝑞)(le‘𝐾)𝑥)) |
34 | | simpr1 1193 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝑥 ∈ (Base‘𝐾)) |
35 | | f1ocnvfv1 7148 |
. . . . . . . . . . . 12
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
36 | 25, 34, 35 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
37 | 36 | breq2d 5086 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → ((◡𝐹‘𝑞)(le‘𝐾)(◡𝐹‘(𝐹‘𝑥)) ↔ (◡𝐹‘𝑞)(le‘𝐾)𝑥)) |
38 | | f1ocnvfv1 7148 |
. . . . . . . . . . . 12
⊢ ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐺‘(𝐺‘𝑥)) = 𝑥) |
39 | 7, 34, 38 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (◡𝐺‘(𝐺‘𝑥)) = 𝑥) |
40 | 39 | breq2d 5086 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → ((◡𝐺‘𝑞)(le‘𝐾)(◡𝐺‘(𝐺‘𝑥)) ↔ (◡𝐺‘𝑞)(le‘𝐾)𝑥)) |
41 | 33, 37, 40 | 3bitr4d 311 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → ((◡𝐹‘𝑞)(le‘𝐾)(◡𝐹‘(𝐹‘𝑥)) ↔ (◡𝐺‘𝑞)(le‘𝐾)(◡𝐺‘(𝐺‘𝑥)))) |
42 | | simpl1l 1223 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ HL) |
43 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LAut‘𝐾) =
(LAut‘𝐾) |
44 | 4, 43, 5 | ltrnlaut 38137 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
45 | 1, 8, 44 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐹 ∈ (LAut‘𝐾)) |
46 | 3, 4, 5 | ltrncl 38139 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘𝑥) ∈ (Base‘𝐾)) |
47 | 1, 8, 34, 46 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐹‘𝑥) ∈ (Base‘𝐾)) |
48 | 3, 10, 43 | lautcnvle 38103 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐹‘𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ (◡𝐹‘𝑞)(le‘𝐾)(◡𝐹‘(𝐹‘𝑥)))) |
49 | 42, 45, 27, 47, 48 | syl22anc 836 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ (◡𝐹‘𝑞)(le‘𝐾)(◡𝐹‘(𝐹‘𝑥)))) |
50 | 4, 43, 5 | ltrnlaut 38137 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺 ∈ (LAut‘𝐾)) |
51 | 1, 2, 50 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → 𝐺 ∈ (LAut‘𝐾)) |
52 | 3, 4, 5 | ltrncl 38139 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘𝑥) ∈ (Base‘𝐾)) |
53 | 1, 2, 34, 52 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝐺‘𝑥) ∈ (Base‘𝐾)) |
54 | 3, 10, 43 | lautcnvle 38103 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝐺 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐺‘𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐺‘𝑥) ↔ (◡𝐺‘𝑞)(le‘𝐾)(◡𝐺‘(𝐺‘𝑥)))) |
55 | 42, 51, 27, 53, 54 | syl22anc 836 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝑞(le‘𝐾)(𝐺‘𝑥) ↔ (◡𝐺‘𝑞)(le‘𝐾)(◡𝐺‘(𝐺‘𝑥)))) |
56 | 41, 49, 55 | 3bitr4d 311 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ∧ 𝑞 ∈ 𝐴)) → (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥))) |
57 | 56 | 3exp2 1353 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑥 ∈ (Base‘𝐾) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → (𝑞 ∈ 𝐴 → (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥)))))) |
58 | 57 | imp 407 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → (𝑞 ∈ 𝐴 → (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥))))) |
59 | 58 | ralrimdv 3105 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → ∀𝑞 ∈ 𝐴 (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥)))) |
60 | | simpl1l 1223 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL) |
61 | | simpl1 1190 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
62 | | simpl2 1191 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐹 ∈ 𝑇) |
63 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) |
64 | 61, 62, 63, 46 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘𝑥) ∈ (Base‘𝐾)) |
65 | | simpl3 1192 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐺 ∈ 𝑇) |
66 | 61, 65, 63, 52 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘𝑥) ∈ (Base‘𝐾)) |
67 | 3, 10, 11 | hlateq 37413 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑥) ∈ (Base‘𝐾) ∧ (𝐺‘𝑥) ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
68 | 60, 64, 66, 67 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞 ∈ 𝐴 (𝑞(le‘𝐾)(𝐹‘𝑥) ↔ 𝑞(le‘𝐾)(𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
69 | 59, 68 | sylibd 238 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → (𝐹‘𝑥) = (𝐺‘𝑥))) |
70 | 69 | ralrimdva 3106 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → ∀𝑥 ∈ (Base‘𝐾)(𝐹‘𝑥) = (𝐺‘𝑥))) |
71 | 24 | 3adant3 1131 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
72 | | f1ofn 6717 |
. . . . 5
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹 Fn (Base‘𝐾)) |
73 | 71, 72 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐹 Fn (Base‘𝐾)) |
74 | 6 | 3adant2 1130 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
75 | | f1ofn 6717 |
. . . . 5
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺 Fn (Base‘𝐾)) |
76 | 74, 75 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐺 Fn (Base‘𝐾)) |
77 | | eqfnfv 6909 |
. . . 4
⊢ ((𝐹 Fn (Base‘𝐾) ∧ 𝐺 Fn (Base‘𝐾)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹‘𝑥) = (𝐺‘𝑥))) |
78 | 73, 76, 77 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹‘𝑥) = (𝐺‘𝑥))) |
79 | 70, 78 | sylibrd 258 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) → 𝐹 = 𝐺)) |
80 | | fveq1 6773 |
. . 3
⊢ (𝐹 = 𝐺 → (𝐹‘𝑝) = (𝐺‘𝑝)) |
81 | 80 | ralrimivw 3104 |
. 2
⊢ (𝐹 = 𝐺 → ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝)) |
82 | 79, 81 | impbid1 224 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ↔ 𝐹 = 𝐺)) |