![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnle | Structured version Visualization version GIF version |
Description: Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnle.b | β’ π΅ = (BaseβπΎ) |
ltrnle.l | β’ β€ = (leβπΎ) |
ltrnle.h | β’ π» = (LHypβπΎ) |
ltrnle.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnle | β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1196 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β πΎ β π) | |
2 | ltrnle.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | eqid 2731 | . . . 4 β’ (LAutβπΎ) = (LAutβπΎ) | |
4 | ltrnle.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | 2, 3, 4 | ltrnlaut 39460 | . . 3 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β (LAutβπΎ)) |
6 | 5 | 3adant3 1131 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β πΉ β (LAutβπΎ)) |
7 | simp3l 1200 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
8 | simp3r 1201 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
9 | ltrnle.b | . . 3 β’ π΅ = (BaseβπΎ) | |
10 | ltrnle.l | . . 3 β’ β€ = (leβπΎ) | |
11 | 9, 10, 3 | lautle 39421 | . 2 β’ (((πΎ β π β§ πΉ β (LAutβπΎ)) β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) |
12 | 1, 6, 7, 8, 11 | syl22anc 836 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 LHypclh 39321 LAutclaut 39322 LTrncltrn 39438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-laut 39326 df-ldil 39441 df-ltrn 39442 |
This theorem is referenced by: ltrnel 39476 ltrncnvel 39479 cdlemc2 39529 cdlemg17h 40005 |
Copyright terms: Public domain | W3C validator |