Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Visualization version   GIF version

Theorem ltrncl 38139
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncl (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1196 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐾𝑉)
2 ltrn1o.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 38137 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1131 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simp3 1137 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝑋𝐵)
8 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
98, 3lautcl 38101 . 2 (((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
101, 6, 7, 9syl21anc 835 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  LHypclh 37998  LAutclaut 37999  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-laut 38003  df-ldil 38118  df-ltrn 38119
This theorem is referenced by:  ltrnatb  38151  ltrneq2  38162  trlval2  38177  trlcl  38178  trljat1  38180  trljat2  38181  trlle  38198  cdlemc4  38208  cdlemc5  38209  cdlemd7  38218  cdlemg4c  38626  cdlemg7N  38640  cdlemg8b  38642  cdlemg11b  38656  trlcolem  38740  cdlemg44a  38745  cdlemi1  38832  cdlemi  38834  cdlemkvcl  38856  cdlemkid1  38936  cdlemm10N  39132  dih1dimatlem  39343
  Copyright terms: Public domain W3C validator