Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Visualization version   GIF version

Theorem ltrncl 40090
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncl (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1198 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐾𝑉)
2 ltrn1o.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2735 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 40088 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1132 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simp3 1138 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝑋𝐵)
8 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
98, 3lautcl 40052 . 2 (((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
101, 6, 7, 9syl21anc 837 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6530  Basecbs 17226  LHypclh 39949  LAutclaut 39950  LTrncltrn 40066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-laut 39954  df-ldil 40069  df-ltrn 40070
This theorem is referenced by:  ltrnatb  40102  ltrneq2  40113  trlval2  40128  trlcl  40129  trljat1  40131  trljat2  40132  trlle  40149  cdlemc4  40159  cdlemc5  40160  cdlemd7  40169  cdlemg4c  40577  cdlemg7N  40591  cdlemg8b  40593  cdlemg11b  40607  trlcolem  40691  cdlemg44a  40696  cdlemi1  40783  cdlemi  40785  cdlemkvcl  40807  cdlemkid1  40887  cdlemm10N  41083  dih1dimatlem  41294
  Copyright terms: Public domain W3C validator