| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncl | Structured version Visualization version GIF version | ||
| Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
| 2 | ltrn1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ltrn1o.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrnlaut 40117 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐹 ∈ (LAut‘𝐾)) |
| 7 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | 8, 3 | lautcl 40081 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| 10 | 1, 6, 7, 9 | syl21anc 837 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 LHypclh 39978 LAutclaut 39979 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-laut 39983 df-ldil 40098 df-ltrn 40099 |
| This theorem is referenced by: ltrnatb 40131 ltrneq2 40142 trlval2 40157 trlcl 40158 trljat1 40160 trljat2 40161 trlle 40178 cdlemc4 40188 cdlemc5 40189 cdlemd7 40198 cdlemg4c 40606 cdlemg7N 40620 cdlemg8b 40622 cdlemg11b 40636 trlcolem 40720 cdlemg44a 40725 cdlemi1 40812 cdlemi 40814 cdlemkvcl 40836 cdlemkid1 40916 cdlemm10N 41112 dih1dimatlem 41323 |
| Copyright terms: Public domain | W3C validator |