![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncl | Structured version Visualization version GIF version |
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrncl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1194 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
2 | ltrn1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2725 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrn1o.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 39726 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | 5 | 3adant3 1129 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐹 ∈ (LAut‘𝐾)) |
7 | simp3 1135 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
9 | 8, 3 | lautcl 39690 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
10 | 1, 6, 7, 9 | syl21anc 836 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 Basecbs 17183 LHypclh 39587 LAutclaut 39588 LTrncltrn 39704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-laut 39592 df-ldil 39707 df-ltrn 39708 |
This theorem is referenced by: ltrnatb 39740 ltrneq2 39751 trlval2 39766 trlcl 39767 trljat1 39769 trljat2 39770 trlle 39787 cdlemc4 39797 cdlemc5 39798 cdlemd7 39807 cdlemg4c 40215 cdlemg7N 40229 cdlemg8b 40231 cdlemg11b 40245 trlcolem 40329 cdlemg44a 40334 cdlemi1 40421 cdlemi 40423 cdlemkvcl 40445 cdlemkid1 40525 cdlemm10N 40721 dih1dimatlem 40932 |
Copyright terms: Public domain | W3C validator |