![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncl | Structured version Visualization version GIF version |
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | β’ π΅ = (BaseβπΎ) |
ltrn1o.h | β’ π» = (LHypβπΎ) |
ltrn1o.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrncl | β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β (πΉβπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1198 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β πΎ β π) | |
2 | ltrn1o.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | eqid 2733 | . . . 4 β’ (LAutβπΎ) = (LAutβπΎ) | |
4 | ltrn1o.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | 2, 3, 4 | ltrnlaut 39042 | . . 3 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β (LAutβπΎ)) |
6 | 5 | 3adant3 1133 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β πΉ β (LAutβπΎ)) |
7 | simp3 1139 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β π β π΅) | |
8 | ltrn1o.b | . . 3 β’ π΅ = (BaseβπΎ) | |
9 | 8, 3 | lautcl 39006 | . 2 β’ (((πΎ β π β§ πΉ β (LAutβπΎ)) β§ π β π΅) β (πΉβπ) β π΅) |
10 | 1, 6, 7, 9 | syl21anc 837 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β (πΉβπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 Basecbs 17144 LHypclh 38903 LAutclaut 38904 LTrncltrn 39020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-laut 38908 df-ldil 39023 df-ltrn 39024 |
This theorem is referenced by: ltrnatb 39056 ltrneq2 39067 trlval2 39082 trlcl 39083 trljat1 39085 trljat2 39086 trlle 39103 cdlemc4 39113 cdlemc5 39114 cdlemd7 39123 cdlemg4c 39531 cdlemg7N 39545 cdlemg8b 39547 cdlemg11b 39561 trlcolem 39645 cdlemg44a 39650 cdlemi1 39737 cdlemi 39739 cdlemkvcl 39761 cdlemkid1 39841 cdlemm10N 40037 dih1dimatlem 40248 |
Copyright terms: Public domain | W3C validator |