Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Visualization version   GIF version

Theorem ltrncl 37366
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncl (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1194 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐾𝑉)
2 ltrn1o.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2824 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 37364 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1129 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simp3 1135 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝑋𝐵)
8 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
98, 3lautcl 37328 . 2 (((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
101, 6, 7, 9syl21anc 836 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cfv 6343  Basecbs 16483  LHypclh 37225  LAutclaut 37226  LTrncltrn 37342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-map 8404  df-laut 37230  df-ldil 37345  df-ltrn 37346
This theorem is referenced by:  ltrnatb  37378  ltrneq2  37389  trlval2  37404  trlcl  37405  trljat1  37407  trljat2  37408  trlle  37425  cdlemc4  37435  cdlemc5  37436  cdlemd7  37445  cdlemg4c  37853  cdlemg7N  37867  cdlemg8b  37869  cdlemg11b  37883  trlcolem  37967  cdlemg44a  37972  cdlemi1  38059  cdlemi  38061  cdlemkvcl  38083  cdlemkid1  38163  cdlemm10N  38359  dih1dimatlem  38570
  Copyright terms: Public domain W3C validator