| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncl | Structured version Visualization version GIF version | ||
| Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
| 2 | ltrn1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2731 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ltrn1o.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrnlaut 40232 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝐹 ∈ (LAut‘𝐾)) |
| 7 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | 8, 3 | lautcl 40196 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| 10 | 1, 6, 7, 9 | syl21anc 837 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 LHypclh 40093 LAutclaut 40094 LTrncltrn 40210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-laut 40098 df-ldil 40213 df-ltrn 40214 |
| This theorem is referenced by: ltrnatb 40246 ltrneq2 40257 trlval2 40272 trlcl 40273 trljat1 40275 trljat2 40276 trlle 40293 cdlemc4 40303 cdlemc5 40304 cdlemd7 40313 cdlemg4c 40721 cdlemg7N 40735 cdlemg8b 40737 cdlemg11b 40751 trlcolem 40835 cdlemg44a 40840 cdlemi1 40927 cdlemi 40929 cdlemkvcl 40951 cdlemkid1 41031 cdlemm10N 41227 dih1dimatlem 41438 |
| Copyright terms: Public domain | W3C validator |