| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnel | Structured version Visualization version GIF version | ||
| Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnel | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l 1202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | ltrnel.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39289 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑃 ∈ (Base‘𝐾)) |
| 6 | ltrnel.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | ltrnel.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 2, 3, 6, 7 | ltrnatb 40138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 9 | 5, 8 | syl3an3 1165 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) |
| 11 | simp3r 1203 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
| 12 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 13 | simp2 1137 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
| 14 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
| 15 | simp1r 1199 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
| 16 | 2, 6 | lhpbase 39999 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 18 | ltrnel.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 19 | 2, 18, 6, 7 | ltrnle 40130 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
| 20 | 12, 13, 14, 17, 19 | syl112anc 1376 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
| 21 | simp1l 1198 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 22 | 21 | hllatd 39364 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 23 | 2, 18 | latref 18407 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 ≤ 𝑊) |
| 24 | 22, 17, 23 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ≤ 𝑊) |
| 25 | 2, 18, 6, 7 | ltrnval1 40135 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
| 26 | 12, 13, 17, 24, 25 | syl112anc 1376 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
| 27 | 26 | breq2d 5122 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ≤ (𝐹‘𝑊) ↔ (𝐹‘𝑃) ≤ 𝑊)) |
| 28 | 20, 27 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ 𝑊)) |
| 29 | 11, 28 | mtbid 324 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
| 30 | 10, 29 | jca 511 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Latclat 18397 Atomscatm 39263 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-glb 18313 df-p0 18391 df-lat 18398 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 |
| This theorem is referenced by: ltrncoelN 40144 ltrnmw 40152 trlcnv 40166 trljat2 40168 cdlemc3 40194 cdlemc5 40196 cdlemd9 40207 cdlemeiota 40586 cdlemg1cex 40589 cdlemg2l 40604 cdlemg2m 40605 cdlemg7fvbwN 40608 cdlemg4a 40609 cdlemg4b1 40610 cdlemg4b2 40611 cdlemg4d 40614 cdlemg4e 40615 cdlemg4 40618 cdlemg6e 40623 cdlemg7fvN 40625 cdlemg8b 40629 cdlemg8c 40630 cdlemg10bALTN 40637 cdlemg10a 40641 cdlemg12d 40647 cdlemg13a 40652 cdlemg13 40653 cdlemg14f 40654 cdlemg17b 40663 cdlemg17f 40667 cdlemg17i 40670 trlcoabs 40722 trlcoabs2N 40723 trlcolem 40727 cdlemg43 40731 cdlemg44b 40733 cdlemi2 40820 cdlemi 40821 cdlemk2 40833 cdlemk3 40834 cdlemk4 40835 cdlemk8 40839 cdlemk9 40840 cdlemk9bN 40841 cdlemki 40842 cdlemksv2 40848 cdlemk12 40851 cdlemkoatnle 40852 cdlemk12u 40873 cdlemkfid1N 40922 cdlemk47 40950 dia2dimlem1 41065 dia2dimlem2 41066 dia2dimlem3 41067 dia2dimlem6 41070 cdlemm10N 41119 dih1dimatlem0 41329 dih1dimatlem 41330 |
| Copyright terms: Public domain | W3C validator |