![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnel | Structured version Visualization version GIF version |
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnel | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37962 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑃 ∈ (Base‘𝐾)) |
6 | ltrnel.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | ltrnel.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 2, 3, 6, 7 | ltrnatb 38811 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 5, 8 | syl3an3 1165 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) |
11 | simp3r 1202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
12 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | simp2 1137 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
14 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
15 | simp1r 1198 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
16 | 2, 6 | lhpbase 38672 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
18 | ltrnel.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
19 | 2, 18, 6, 7 | ltrnle 38803 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
20 | 12, 13, 14, 17, 19 | syl112anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
21 | simp1l 1197 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
22 | 21 | hllatd 38037 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
23 | 2, 18 | latref 18376 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 ≤ 𝑊) |
24 | 22, 17, 23 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ≤ 𝑊) |
25 | 2, 18, 6, 7 | ltrnval1 38808 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
26 | 12, 13, 17, 24, 25 | syl112anc 1374 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
27 | 26 | breq2d 5153 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ≤ (𝐹‘𝑊) ↔ (𝐹‘𝑃) ≤ 𝑊)) |
28 | 20, 27 | bitrd 278 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ 𝑊)) |
29 | 11, 28 | mtbid 323 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
30 | 10, 29 | jca 512 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5141 ‘cfv 6532 Basecbs 17126 lecple 17186 Latclat 18366 Atomscatm 37936 HLchlt 38023 LHypclh 38658 LTrncltrn 38775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-map 8805 df-proset 18230 df-poset 18248 df-plt 18265 df-glb 18282 df-p0 18360 df-lat 18367 df-oposet 37849 df-ol 37851 df-oml 37852 df-covers 37939 df-ats 37940 df-atl 37971 df-cvlat 37995 df-hlat 38024 df-lhyp 38662 df-laut 38663 df-ldil 38778 df-ltrn 38779 |
This theorem is referenced by: ltrncoelN 38817 ltrnmw 38825 trlcnv 38839 trljat2 38841 cdlemc3 38867 cdlemc5 38869 cdlemd9 38880 cdlemeiota 39259 cdlemg1cex 39262 cdlemg2l 39277 cdlemg2m 39278 cdlemg7fvbwN 39281 cdlemg4a 39282 cdlemg4b1 39283 cdlemg4b2 39284 cdlemg4d 39287 cdlemg4e 39288 cdlemg4 39291 cdlemg6e 39296 cdlemg7fvN 39298 cdlemg8b 39302 cdlemg8c 39303 cdlemg10bALTN 39310 cdlemg10a 39314 cdlemg12d 39320 cdlemg13a 39325 cdlemg13 39326 cdlemg14f 39327 cdlemg17b 39336 cdlemg17f 39340 cdlemg17i 39343 trlcoabs 39395 trlcoabs2N 39396 trlcolem 39400 cdlemg43 39404 cdlemg44b 39406 cdlemi2 39493 cdlemi 39494 cdlemk2 39506 cdlemk3 39507 cdlemk4 39508 cdlemk8 39512 cdlemk9 39513 cdlemk9bN 39514 cdlemki 39515 cdlemksv2 39521 cdlemk12 39524 cdlemkoatnle 39525 cdlemk12u 39546 cdlemkfid1N 39595 cdlemk47 39623 dia2dimlem1 39738 dia2dimlem2 39739 dia2dimlem3 39740 dia2dimlem6 39743 cdlemm10N 39792 dih1dimatlem0 40002 dih1dimatlem 40003 |
Copyright terms: Public domain | W3C validator |