![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnel | Structured version Visualization version GIF version |
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnel | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
2 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 39270 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑃 ∈ (Base‘𝐾)) |
6 | ltrnel.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | ltrnel.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 2, 3, 6, 7 | ltrnatb 40119 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 5, 8 | syl3an3 1164 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
10 | 1, 9 | mpbid 232 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) |
11 | simp3r 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
12 | simp1 1135 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | simp2 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
14 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
15 | simp1r 1197 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
16 | 2, 6 | lhpbase 39980 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
18 | ltrnel.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
19 | 2, 18, 6, 7 | ltrnle 40111 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
20 | 12, 13, 14, 17, 19 | syl112anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑊))) |
21 | simp1l 1196 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
22 | 21 | hllatd 39345 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
23 | 2, 18 | latref 18498 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 ≤ 𝑊) |
24 | 22, 17, 23 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ≤ 𝑊) |
25 | 2, 18, 6, 7 | ltrnval1 40116 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
26 | 12, 13, 17, 24, 25 | syl112anc 1373 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
27 | 26 | breq2d 5159 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ≤ (𝐹‘𝑊) ↔ (𝐹‘𝑃) ≤ 𝑊)) |
28 | 20, 27 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ≤ 𝑊 ↔ (𝐹‘𝑃) ≤ 𝑊)) |
29 | 11, 28 | mtbid 324 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
30 | 10, 29 | jca 511 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 Basecbs 17244 lecple 17304 Latclat 18488 Atomscatm 39244 HLchlt 39331 LHypclh 39966 LTrncltrn 40083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-proset 18351 df-poset 18370 df-plt 18387 df-glb 18404 df-p0 18482 df-lat 18489 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 |
This theorem is referenced by: ltrncoelN 40125 ltrnmw 40133 trlcnv 40147 trljat2 40149 cdlemc3 40175 cdlemc5 40177 cdlemd9 40188 cdlemeiota 40567 cdlemg1cex 40570 cdlemg2l 40585 cdlemg2m 40586 cdlemg7fvbwN 40589 cdlemg4a 40590 cdlemg4b1 40591 cdlemg4b2 40592 cdlemg4d 40595 cdlemg4e 40596 cdlemg4 40599 cdlemg6e 40604 cdlemg7fvN 40606 cdlemg8b 40610 cdlemg8c 40611 cdlemg10bALTN 40618 cdlemg10a 40622 cdlemg12d 40628 cdlemg13a 40633 cdlemg13 40634 cdlemg14f 40635 cdlemg17b 40644 cdlemg17f 40648 cdlemg17i 40651 trlcoabs 40703 trlcoabs2N 40704 trlcolem 40708 cdlemg43 40712 cdlemg44b 40714 cdlemi2 40801 cdlemi 40802 cdlemk2 40814 cdlemk3 40815 cdlemk4 40816 cdlemk8 40820 cdlemk9 40821 cdlemk9bN 40822 cdlemki 40823 cdlemksv2 40829 cdlemk12 40832 cdlemkoatnle 40833 cdlemk12u 40854 cdlemkfid1N 40903 cdlemk47 40931 dia2dimlem1 41046 dia2dimlem2 41047 dia2dimlem3 41048 dia2dimlem6 41051 cdlemm10N 41100 dih1dimatlem0 41310 dih1dimatlem 41311 |
Copyright terms: Public domain | W3C validator |