Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Structured version   Visualization version   GIF version

Theorem ltrnel 36298
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnel (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 1215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 ltrnel.a . . . . . 6 𝐴 = (Atoms‘𝐾)
42, 3atbase 35448 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
54adantr 474 . . . 4 ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) → 𝑃 ∈ (Base‘𝐾))
6 ltrnel.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 ltrnel.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
82, 3, 6, 7ltrnatb 36296 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
95, 8syl3an3 1166 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
101, 9mpbid 224 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp3r 1216 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
12 simp1 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp2 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
141, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
15 simp1r 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
162, 6lhpbase 36157 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
18 ltrnel.l . . . . . 6 = (le‘𝐾)
192, 18, 6, 7ltrnle 36288 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝑃 𝑊 ↔ (𝐹𝑃) (𝐹𝑊)))
2012, 13, 14, 17, 19syl112anc 1442 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊 ↔ (𝐹𝑃) (𝐹𝑊)))
21 simp1l 1211 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2221hllatd 35523 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
232, 18latref 17443 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 𝑊)
2422, 17, 23syl2anc 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 𝑊)
252, 18, 6, 7ltrnval1 36293 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 𝑊)) → (𝐹𝑊) = 𝑊)
2612, 13, 17, 24, 25syl112anc 1442 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑊) = 𝑊)
2726breq2d 4900 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐹𝑊) ↔ (𝐹𝑃) 𝑊))
2820, 27bitrd 271 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊 ↔ (𝐹𝑃) 𝑊))
2911, 28mtbid 316 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
3010, 29jca 507 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4888  cfv 6137  Basecbs 16259  lecple 16349  Latclat 17435  Atomscatm 35422  HLchlt 35509  LHypclh 36143  LTrncltrn 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-proset 17318  df-poset 17336  df-plt 17348  df-glb 17365  df-p0 17429  df-lat 17436  df-oposet 35335  df-ol 35337  df-oml 35338  df-covers 35425  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-lhyp 36147  df-laut 36148  df-ldil 36263  df-ltrn 36264
This theorem is referenced by:  ltrncoelN  36302  ltrnmw  36310  trlcnv  36324  trljat2  36326  cdlemc3  36352  cdlemc5  36354  cdlemd9  36365  cdlemeiota  36744  cdlemg1cex  36747  cdlemg2l  36762  cdlemg2m  36763  cdlemg7fvbwN  36766  cdlemg4a  36767  cdlemg4b1  36768  cdlemg4b2  36769  cdlemg4d  36772  cdlemg4e  36773  cdlemg4  36776  cdlemg6e  36781  cdlemg7fvN  36783  cdlemg8b  36787  cdlemg8c  36788  cdlemg10bALTN  36795  cdlemg10a  36799  cdlemg12d  36805  cdlemg13a  36810  cdlemg13  36811  cdlemg14f  36812  cdlemg17b  36821  cdlemg17f  36825  cdlemg17i  36828  trlcoabs  36880  trlcoabs2N  36881  trlcolem  36885  cdlemg43  36889  cdlemg44b  36891  cdlemi2  36978  cdlemi  36979  cdlemk2  36991  cdlemk3  36992  cdlemk4  36993  cdlemk8  36997  cdlemk9  36998  cdlemk9bN  36999  cdlemki  37000  cdlemksv2  37006  cdlemk12  37009  cdlemkoatnle  37010  cdlemk12u  37031  cdlemkfid1N  37080  cdlemk47  37108  dia2dimlem1  37223  dia2dimlem2  37224  dia2dimlem3  37225  dia2dimlem6  37228  cdlemm10N  37277  dih1dimatlem0  37487  dih1dimatlem  37488
  Copyright terms: Public domain W3C validator