Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Structured version   Visualization version   GIF version

Theorem ltrnel 39058
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnel (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
2 eqid 2733 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 ltrnel.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
42, 3atbase 38207 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
54adantr 482 . . . 4 ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
6 ltrnel.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
7 ltrnel.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
82, 3, 6, 7ltrnatb 39056 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∈ 𝐴 ↔ (πΉβ€˜π‘ƒ) ∈ 𝐴))
95, 8syl3an3 1166 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ↔ (πΉβ€˜π‘ƒ) ∈ 𝐴))
101, 9mpbid 231 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
11 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ π‘Š)
12 simp1 1137 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13 simp2 1138 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
141, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
15 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
162, 6lhpbase 38917 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
18 ltrnel.l . . . . . 6 ≀ = (leβ€˜πΎ)
192, 18, 6, 7ltrnle 39048 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š)))
2012, 13, 14, 17, 19syl112anc 1375 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š)))
21 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2221hllatd 38282 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
232, 18latref 18394 . . . . . . 7 ((𝐾 ∈ Lat ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ π‘Š ≀ π‘Š)
2422, 17, 23syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ≀ π‘Š)
252, 18, 6, 7ltrnval1 39053 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (π‘Š ∈ (Baseβ€˜πΎ) ∧ π‘Š ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
2612, 13, 17, 24, 25syl112anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
2726breq2d 5161 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š) ↔ (πΉβ€˜π‘ƒ) ≀ π‘Š))
2820, 27bitrd 279 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ π‘Š))
2911, 28mtbid 324 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)
3010, 29jca 513 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Latclat 18384  Atomscatm 38181  HLchlt 38268  LHypclh 38903  LTrncltrn 39020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-glb 18300  df-p0 18378  df-lat 18385  df-oposet 38094  df-ol 38096  df-oml 38097  df-covers 38184  df-ats 38185  df-atl 38216  df-cvlat 38240  df-hlat 38269  df-lhyp 38907  df-laut 38908  df-ldil 39023  df-ltrn 39024
This theorem is referenced by:  ltrncoelN  39062  ltrnmw  39070  trlcnv  39084  trljat2  39086  cdlemc3  39112  cdlemc5  39114  cdlemd9  39125  cdlemeiota  39504  cdlemg1cex  39507  cdlemg2l  39522  cdlemg2m  39523  cdlemg7fvbwN  39526  cdlemg4a  39527  cdlemg4b1  39528  cdlemg4b2  39529  cdlemg4d  39532  cdlemg4e  39533  cdlemg4  39536  cdlemg6e  39541  cdlemg7fvN  39543  cdlemg8b  39547  cdlemg8c  39548  cdlemg10bALTN  39555  cdlemg10a  39559  cdlemg12d  39565  cdlemg13a  39570  cdlemg13  39571  cdlemg14f  39572  cdlemg17b  39581  cdlemg17f  39585  cdlemg17i  39588  trlcoabs  39640  trlcoabs2N  39641  trlcolem  39645  cdlemg43  39649  cdlemg44b  39651  cdlemi2  39738  cdlemi  39739  cdlemk2  39751  cdlemk3  39752  cdlemk4  39753  cdlemk8  39757  cdlemk9  39758  cdlemk9bN  39759  cdlemki  39760  cdlemksv2  39766  cdlemk12  39769  cdlemkoatnle  39770  cdlemk12u  39791  cdlemkfid1N  39840  cdlemk47  39868  dia2dimlem1  39983  dia2dimlem2  39984  dia2dimlem3  39985  dia2dimlem6  39988  cdlemm10N  40037  dih1dimatlem0  40247  dih1dimatlem  40248
  Copyright terms: Public domain W3C validator