Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Structured version   Visualization version   GIF version

Theorem ltrnel 38648
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnel (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
2 eqid 2733 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 ltrnel.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
42, 3atbase 37797 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
54adantr 482 . . . 4 ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
6 ltrnel.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
7 ltrnel.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
82, 3, 6, 7ltrnatb 38646 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∈ 𝐴 ↔ (πΉβ€˜π‘ƒ) ∈ 𝐴))
95, 8syl3an3 1166 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ↔ (πΉβ€˜π‘ƒ) ∈ 𝐴))
101, 9mpbid 231 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
11 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ π‘Š)
12 simp1 1137 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13 simp2 1138 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
141, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
15 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
162, 6lhpbase 38507 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
18 ltrnel.l . . . . . 6 ≀ = (leβ€˜πΎ)
192, 18, 6, 7ltrnle 38638 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š)))
2012, 13, 14, 17, 19syl112anc 1375 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š)))
21 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2221hllatd 37872 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
232, 18latref 18335 . . . . . . 7 ((𝐾 ∈ Lat ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ π‘Š ≀ π‘Š)
2422, 17, 23syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ≀ π‘Š)
252, 18, 6, 7ltrnval1 38643 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (π‘Š ∈ (Baseβ€˜πΎ) ∧ π‘Š ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
2612, 13, 17, 24, 25syl112anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
2726breq2d 5118 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ≀ (πΉβ€˜π‘Š) ↔ (πΉβ€˜π‘ƒ) ≀ π‘Š))
2820, 27bitrd 279 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ≀ π‘Š ↔ (πΉβ€˜π‘ƒ) ≀ π‘Š))
2911, 28mtbid 324 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)
3010, 29jca 513 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  Basecbs 17088  lecple 17145  Latclat 18325  Atomscatm 37771  HLchlt 37858  LHypclh 38493  LTrncltrn 38610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-map 8770  df-proset 18189  df-poset 18207  df-plt 18224  df-glb 18241  df-p0 18319  df-lat 18326  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-lhyp 38497  df-laut 38498  df-ldil 38613  df-ltrn 38614
This theorem is referenced by:  ltrncoelN  38652  ltrnmw  38660  trlcnv  38674  trljat2  38676  cdlemc3  38702  cdlemc5  38704  cdlemd9  38715  cdlemeiota  39094  cdlemg1cex  39097  cdlemg2l  39112  cdlemg2m  39113  cdlemg7fvbwN  39116  cdlemg4a  39117  cdlemg4b1  39118  cdlemg4b2  39119  cdlemg4d  39122  cdlemg4e  39123  cdlemg4  39126  cdlemg6e  39131  cdlemg7fvN  39133  cdlemg8b  39137  cdlemg8c  39138  cdlemg10bALTN  39145  cdlemg10a  39149  cdlemg12d  39155  cdlemg13a  39160  cdlemg13  39161  cdlemg14f  39162  cdlemg17b  39171  cdlemg17f  39175  cdlemg17i  39178  trlcoabs  39230  trlcoabs2N  39231  trlcolem  39235  cdlemg43  39239  cdlemg44b  39241  cdlemi2  39328  cdlemi  39329  cdlemk2  39341  cdlemk3  39342  cdlemk4  39343  cdlemk8  39347  cdlemk9  39348  cdlemk9bN  39349  cdlemki  39350  cdlemksv2  39356  cdlemk12  39359  cdlemkoatnle  39360  cdlemk12u  39381  cdlemkfid1N  39430  cdlemk47  39458  dia2dimlem1  39573  dia2dimlem2  39574  dia2dimlem3  39575  dia2dimlem6  39578  cdlemm10N  39627  dih1dimatlem0  39837  dih1dimatlem  39838
  Copyright terms: Public domain W3C validator