MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashmap Structured version   Visualization version   GIF version

Theorem hashmap 14360
Description: The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
hashmap ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))

Proof of Theorem hashmap
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . 6 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21fveq2d 6830 . . . . 5 (𝑥 = ∅ → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m ∅)))
3 fveq2 6826 . . . . . 6 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq2d 7369 . . . . 5 (𝑥 = ∅ → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘∅)))
52, 4eqeq12d 2745 . . . 4 (𝑥 = ∅ → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅))))
65imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))))
7 oveq2 7361 . . . . . 6 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
87fveq2d 6830 . . . . 5 (𝑥 = 𝑦 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝑦)))
9 fveq2 6826 . . . . . 6 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
109oveq2d 7369 . . . . 5 (𝑥 = 𝑦 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝑦)))
118, 10eqeq12d 2745 . . . 4 (𝑥 = 𝑦 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)))))
13 oveq2 7361 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
1413fveq2d 6830 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m (𝑦 ∪ {𝑧}))))
15 fveq2 6826 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq2d 7369 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))
1714, 16eqeq12d 2745 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
1817imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
19 oveq2 7361 . . . . . 6 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
2019fveq2d 6830 . . . . 5 (𝑥 = 𝐵 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝐵)))
21 fveq2 6826 . . . . . 6 (𝑥 = 𝐵 → (♯‘𝑥) = (♯‘𝐵))
2221oveq2d 7369 . . . . 5 (𝑥 = 𝐵 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝐵)))
2320, 22eqeq12d 2745 . . . 4 (𝑥 = 𝐵 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
2423imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))))
25 hashcl 14281 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2625nn0cnd 12465 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2726exp0d 14065 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑0) = 1)
28 hash0 14292 . . . . . 6 (♯‘∅) = 0
2928oveq2i 7364 . . . . 5 ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0)
3029a1i 11 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0))
31 mapdm0 8776 . . . . . 6 (𝐴 ∈ Fin → (𝐴m ∅) = {∅})
3231fveq2d 6830 . . . . 5 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = (♯‘{∅}))
33 0ex 5249 . . . . . 6 ∅ ∈ V
34 hashsng 14294 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
3533, 34mp1i 13 . . . . 5 (𝐴 ∈ Fin → (♯‘{∅}) = 1)
3632, 35eqtrd 2764 . . . 4 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = 1)
3727, 30, 363eqtr4rd 2775 . . 3 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))
38 oveq1 7360 . . . . . 6 ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
39 vex 3442 . . . . . . . . . . 11 𝑦 ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ V)
41 vsnex 5376 . . . . . . . . . . 11 {𝑧} ∈ V
4241a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → {𝑧} ∈ V)
43 elex 3459 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ V)
4443adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ V)
45 simprr 772 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
46 disjsn 4665 . . . . . . . . . . 11 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4745, 46sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
48 mapunen 9070 . . . . . . . . . 10 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
4940, 42, 44, 47, 48syl31anc 1375 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
50 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ Fin)
51 simprl 770 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
52 snfi 8975 . . . . . . . . . . . 12 {𝑧} ∈ Fin
53 unfi 9095 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5451, 52, 53sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∪ {𝑧}) ∈ Fin)
55 mapfi 9257 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
5650, 54, 55syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
57 mapfi 9257 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝐴m 𝑦) ∈ Fin)
5857adantrr 717 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m 𝑦) ∈ Fin)
59 mapfi 9257 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴m {𝑧}) ∈ Fin)
6050, 52, 59sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ∈ Fin)
61 xpfi 9227 . . . . . . . . . . 11 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
6258, 60, 61syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
63 hashen 14272 . . . . . . . . . 10 (((𝐴m (𝑦 ∪ {𝑧})) ∈ Fin ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6456, 62, 63syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6549, 64mpbird 257 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))))
66 hashxp 14359 . . . . . . . . 9 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
6758, 60, 66syl2anc 584 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
68 vex 3442 . . . . . . . . . . . 12 𝑧 ∈ V
6968a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ V)
7050, 69mapsnend 8968 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ≈ 𝐴)
71 hashen 14272 . . . . . . . . . . 11 (((𝐴m {𝑧}) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7260, 50, 71syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7370, 72mpbird 257 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m {𝑧})) = (♯‘𝐴))
7473oveq2d 7369 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
7565, 67, 743eqtrd 2768 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
76 hashunsng 14317 . . . . . . . . . . 11 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
7776elv 3443 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7877adantl 481 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7978oveq2d 7369 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑((♯‘𝑦) + 1)))
8026adantr 480 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝐴) ∈ ℂ)
81 hashcl 14281 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
8281ad2antrl 728 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝑦) ∈ ℕ0)
8380, 82expp1d 14072 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑((♯‘𝑦) + 1)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8479, 83eqtrd 2764 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8575, 84eqeq12d 2745 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) ↔ ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))))
8638, 85imbitrrid 246 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
8786expcom 413 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐴 ∈ Fin → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
8887a2d 29 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))) → (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
896, 12, 18, 24, 37, 88findcard2s 9089 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
9089impcom 407 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  cin 3904  c0 4286  {csn 4579   class class class wbr 5095   × cxp 5621  cfv 6486  (class class class)co 7353  m cmap 8760  cen 8876  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  0cn0 12402  cexp 13986  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-exp 13987  df-hash 14256
This theorem is referenced by:  hashpw  14361  hashwrdn  14472  prmreclem2  16847  efmndhash  18768  birthdaylem2  26878
  Copyright terms: Public domain W3C validator