MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashmap Structured version   Visualization version   GIF version

Theorem hashmap 13799
Description: The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
hashmap ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))

Proof of Theorem hashmap
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7167 . . . . . 6 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21fveq2d 6677 . . . . 5 (𝑥 = ∅ → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m ∅)))
3 fveq2 6673 . . . . . 6 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq2d 7175 . . . . 5 (𝑥 = ∅ → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘∅)))
52, 4eqeq12d 2840 . . . 4 (𝑥 = ∅ → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅))))
65imbi2d 343 . . 3 (𝑥 = ∅ → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))))
7 oveq2 7167 . . . . . 6 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
87fveq2d 6677 . . . . 5 (𝑥 = 𝑦 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝑦)))
9 fveq2 6673 . . . . . 6 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
109oveq2d 7175 . . . . 5 (𝑥 = 𝑦 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝑦)))
118, 10eqeq12d 2840 . . . 4 (𝑥 = 𝑦 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))))
1211imbi2d 343 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)))))
13 oveq2 7167 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
1413fveq2d 6677 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m (𝑦 ∪ {𝑧}))))
15 fveq2 6673 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq2d 7175 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))
1714, 16eqeq12d 2840 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
1817imbi2d 343 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
19 oveq2 7167 . . . . . 6 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
2019fveq2d 6677 . . . . 5 (𝑥 = 𝐵 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝐵)))
21 fveq2 6673 . . . . . 6 (𝑥 = 𝐵 → (♯‘𝑥) = (♯‘𝐵))
2221oveq2d 7175 . . . . 5 (𝑥 = 𝐵 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝐵)))
2320, 22eqeq12d 2840 . . . 4 (𝑥 = 𝐵 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
2423imbi2d 343 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))))
25 hashcl 13720 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2625nn0cnd 11960 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2726exp0d 13507 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑0) = 1)
28 hash0 13731 . . . . . 6 (♯‘∅) = 0
2928oveq2i 7170 . . . . 5 ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0)
3029a1i 11 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0))
31 mapdm0 8424 . . . . . 6 (𝐴 ∈ Fin → (𝐴m ∅) = {∅})
3231fveq2d 6677 . . . . 5 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = (♯‘{∅}))
33 0ex 5214 . . . . . 6 ∅ ∈ V
34 hashsng 13733 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
3533, 34mp1i 13 . . . . 5 (𝐴 ∈ Fin → (♯‘{∅}) = 1)
3632, 35eqtrd 2859 . . . 4 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = 1)
3727, 30, 363eqtr4rd 2870 . . 3 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))
38 oveq1 7166 . . . . . 6 ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
39 vex 3500 . . . . . . . . . . 11 𝑦 ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ V)
41 snex 5335 . . . . . . . . . . 11 {𝑧} ∈ V
4241a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → {𝑧} ∈ V)
43 elex 3515 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ V)
4443adantr 483 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ V)
45 simprr 771 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
46 disjsn 4650 . . . . . . . . . . 11 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4745, 46sylibr 236 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
48 mapunen 8689 . . . . . . . . . 10 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
4940, 42, 44, 47, 48syl31anc 1369 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
50 simpl 485 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ Fin)
51 simprl 769 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
52 snfi 8597 . . . . . . . . . . . 12 {𝑧} ∈ Fin
53 unfi 8788 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5451, 52, 53sylancl 588 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∪ {𝑧}) ∈ Fin)
55 mapfi 8823 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
5650, 54, 55syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
57 mapfi 8823 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝐴m 𝑦) ∈ Fin)
5857adantrr 715 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m 𝑦) ∈ Fin)
59 mapfi 8823 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴m {𝑧}) ∈ Fin)
6050, 52, 59sylancl 588 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ∈ Fin)
61 xpfi 8792 . . . . . . . . . . 11 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
6258, 60, 61syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
63 hashen 13710 . . . . . . . . . 10 (((𝐴m (𝑦 ∪ {𝑧})) ∈ Fin ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6456, 62, 63syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6549, 64mpbird 259 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))))
66 hashxp 13798 . . . . . . . . 9 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
6758, 60, 66syl2anc 586 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
68 vex 3500 . . . . . . . . . . . 12 𝑧 ∈ V
6968a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ V)
7050, 69mapsnend 8591 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ≈ 𝐴)
71 hashen 13710 . . . . . . . . . . 11 (((𝐴m {𝑧}) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7260, 50, 71syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7370, 72mpbird 259 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m {𝑧})) = (♯‘𝐴))
7473oveq2d 7175 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
7565, 67, 743eqtrd 2863 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
76 hashunsng 13756 . . . . . . . . . . 11 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
7776elv 3502 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7877adantl 484 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7978oveq2d 7175 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑((♯‘𝑦) + 1)))
8026adantr 483 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝐴) ∈ ℂ)
81 hashcl 13720 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
8281ad2antrl 726 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝑦) ∈ ℕ0)
8380, 82expp1d 13514 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑((♯‘𝑦) + 1)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8479, 83eqtrd 2859 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8575, 84eqeq12d 2840 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) ↔ ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))))
8638, 85syl5ibr 248 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
8786expcom 416 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐴 ∈ Fin → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
8887a2d 29 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))) → (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
896, 12, 18, 24, 37, 88findcard2s 8762 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
9089impcom 410 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  cin 3938  c0 4294  {csn 4570   class class class wbr 5069   × cxp 5556  cfv 6358  (class class class)co 7159  m cmap 8409  cen 8509  Fincfn 8512  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  0cn0 11900  cexp 13432  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-exp 13433  df-hash 13694
This theorem is referenced by:  hashpw  13800  hashwrdn  13901  prmreclem2  16256  efmndhash  18044  birthdaylem2  25533
  Copyright terms: Public domain W3C validator