Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐴 ↑m 𝑥) = (𝐴 ↑m
∅)) |
2 | 1 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = ∅ →
(♯‘(𝐴
↑m 𝑥)) =
(♯‘(𝐴
↑m ∅))) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
(♯‘∅)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = ∅ →
((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘∅))) |
5 | 2, 4 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = ∅ →
((♯‘(𝐴
↑m 𝑥)) =
((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴 ↑m ∅)) =
((♯‘𝐴)↑(♯‘∅)))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ∈ Fin →
(♯‘(𝐴
↑m 𝑥)) =
((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 ↑m ∅)) =
((♯‘𝐴)↑(♯‘∅))))) |
7 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝑦)) |
8 | 7 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = 𝑦 → (♯‘(𝐴 ↑m 𝑥)) = (♯‘(𝐴 ↑m 𝑦))) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) |
10 | 9 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝑦))) |
11 | 8, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑦 → ((♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴 ↑m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))))) |
13 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ↑m 𝑥) = (𝐴 ↑m (𝑦 ∪ {𝑧}))) |
14 | 13 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝐴 ↑m 𝑥)) = (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧})))) |
15 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧}))) |
16 | 15 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))) |
17 | 14, 16 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))) |
19 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐴 ↑m 𝑥) = (𝐴 ↑m 𝐵)) |
20 | 19 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = 𝐵 → (♯‘(𝐴 ↑m 𝑥)) = (♯‘(𝐴 ↑m 𝐵))) |
21 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (♯‘𝑥) = (♯‘𝐵)) |
22 | 21 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝐵))) |
23 | 20, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝐵 → ((♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴 ↑m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))) |
25 | | hashcl 13999 |
. . . . . 6
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℕ0) |
26 | 25 | nn0cnd 12225 |
. . . . 5
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℂ) |
27 | 26 | exp0d 13786 |
. . . 4
⊢ (𝐴 ∈ Fin →
((♯‘𝐴)↑0)
= 1) |
28 | | hash0 14010 |
. . . . . 6
⊢
(♯‘∅) = 0 |
29 | 28 | oveq2i 7266 |
. . . . 5
⊢
((♯‘𝐴)↑(♯‘∅)) =
((♯‘𝐴)↑0) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ Fin →
((♯‘𝐴)↑(♯‘∅)) =
((♯‘𝐴)↑0)) |
31 | | mapdm0 8588 |
. . . . . 6
⊢ (𝐴 ∈ Fin → (𝐴 ↑m ∅) =
{∅}) |
32 | 31 | fveq2d 6760 |
. . . . 5
⊢ (𝐴 ∈ Fin →
(♯‘(𝐴
↑m ∅)) = (♯‘{∅})) |
33 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
34 | | hashsng 14012 |
. . . . . 6
⊢ (∅
∈ V → (♯‘{∅}) = 1) |
35 | 33, 34 | mp1i 13 |
. . . . 5
⊢ (𝐴 ∈ Fin →
(♯‘{∅}) = 1) |
36 | 32, 35 | eqtrd 2778 |
. . . 4
⊢ (𝐴 ∈ Fin →
(♯‘(𝐴
↑m ∅)) = 1) |
37 | 27, 30, 36 | 3eqtr4rd 2789 |
. . 3
⊢ (𝐴 ∈ Fin →
(♯‘(𝐴
↑m ∅)) = ((♯‘𝐴)↑(♯‘∅))) |
38 | | oveq1 7262 |
. . . . . 6
⊢
((♯‘(𝐴
↑m 𝑦)) =
((♯‘𝐴)↑(♯‘𝑦)) → ((♯‘(𝐴 ↑m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))) |
39 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
40 | 39 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ V) |
41 | | snex 5349 |
. . . . . . . . . . 11
⊢ {𝑧} ∈ V |
42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → {𝑧} ∈ V) |
43 | | elex 3440 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Fin → 𝐴 ∈ V) |
44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝐴 ∈ V) |
45 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
46 | | disjsn 4644 |
. . . . . . . . . . 11
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
47 | 45, 46 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
48 | | mapunen 8882 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
49 | 40, 42, 44, 47, 48 | syl31anc 1371 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) |
50 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝐴 ∈ Fin) |
51 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
52 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ {𝑧} ∈ Fin |
53 | | unfi 8917 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
54 | 51, 52, 53 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
55 | | mapfi 9045 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ∈ Fin) |
56 | 50, 54, 55 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↑m (𝑦 ∪ {𝑧})) ∈ Fin) |
57 | | mapfi 9045 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝐴 ↑m 𝑦) ∈ Fin) |
58 | 57 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↑m 𝑦) ∈ Fin) |
59 | | mapfi 9045 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ↑m {𝑧}) ∈ Fin) |
60 | 50, 52, 59 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↑m {𝑧}) ∈ Fin) |
61 | | xpfi 9015 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑m 𝑦) ∈ Fin ∧ (𝐴 ↑m {𝑧}) ∈ Fin) → ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∈ Fin) |
62 | 58, 60, 61 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∈ Fin) |
63 | | hashen 13989 |
. . . . . . . . . 10
⊢ (((𝐴 ↑m (𝑦 ∪ {𝑧})) ∈ Fin ∧ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})) ∈ Fin) → ((♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) ↔ (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})))) |
64 | 56, 62, 63 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) ↔ (𝐴 ↑m (𝑦 ∪ {𝑧})) ≈ ((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})))) |
65 | 49, 64 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧})))) |
66 | | hashxp 14077 |
. . . . . . . . 9
⊢ (((𝐴 ↑m 𝑦) ∈ Fin ∧ (𝐴 ↑m {𝑧}) ∈ Fin) →
(♯‘((𝐴
↑m 𝑦)
× (𝐴
↑m {𝑧}))) =
((♯‘(𝐴
↑m 𝑦))
· (♯‘(𝐴
↑m {𝑧})))) |
67 | 58, 60, 66 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘((𝐴 ↑m 𝑦) × (𝐴 ↑m {𝑧}))) = ((♯‘(𝐴 ↑m 𝑦)) · (♯‘(𝐴 ↑m {𝑧})))) |
68 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
69 | 68 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑧 ∈ V) |
70 | 50, 69 | mapsnend 8780 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↑m {𝑧}) ≈ 𝐴) |
71 | | hashen 13989 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑m {𝑧}) ∈ Fin ∧ 𝐴 ∈ Fin) →
((♯‘(𝐴
↑m {𝑧})) =
(♯‘𝐴) ↔
(𝐴 ↑m
{𝑧}) ≈ 𝐴)) |
72 | 60, 50, 71 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘(𝐴 ↑m {𝑧})) = (♯‘𝐴) ↔ (𝐴 ↑m {𝑧}) ≈ 𝐴)) |
73 | 70, 72 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘(𝐴 ↑m {𝑧})) = (♯‘𝐴)) |
74 | 73 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘(𝐴 ↑m 𝑦)) · (♯‘(𝐴 ↑m {𝑧}))) = ((♯‘(𝐴 ↑m 𝑦)) · (♯‘𝐴))) |
75 | 65, 67, 74 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘(𝐴 ↑m 𝑦)) · (♯‘𝐴))) |
76 | | hashunsng 14035 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))) |
77 | 76 | elv 3428 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)) |
78 | 77 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)) |
79 | 78 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑((♯‘𝑦) + 1))) |
80 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘𝐴) ∈ ℂ) |
81 | | hashcl 13999 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Fin →
(♯‘𝑦) ∈
ℕ0) |
82 | 81 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (♯‘𝑦) ∈
ℕ0) |
83 | 80, 82 | expp1d 13793 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘𝐴)↑((♯‘𝑦) + 1)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))) |
84 | 79, 83 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))) |
85 | 75, 84 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) ↔ ((♯‘(𝐴 ↑m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))) |
86 | 38, 85 | syl5ibr 245 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((♯‘(𝐴 ↑m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))) |
87 | 86 | expcom 413 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝐴 ∈ Fin → ((♯‘(𝐴 ↑m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))) |
88 | 87 | a2d 29 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐴 ∈ Fin → (♯‘(𝐴 ↑m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))) → (𝐴 ∈ Fin → (♯‘(𝐴 ↑m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))) |
89 | 6, 12, 18, 24, 37, 88 | findcard2s 8910 |
. 2
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin →
(♯‘(𝐴
↑m 𝐵)) =
((♯‘𝐴)↑(♯‘𝐵)))) |
90 | 89 | impcom 407 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
(♯‘(𝐴
↑m 𝐵)) =
((♯‘𝐴)↑(♯‘𝐵))) |