MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashmap Structured version   Visualization version   GIF version

Theorem hashmap 14458
Description: The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
hashmap ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))

Proof of Theorem hashmap
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . 6 (𝑥 = ∅ → (𝐴m 𝑥) = (𝐴m ∅))
21fveq2d 6885 . . . . 5 (𝑥 = ∅ → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m ∅)))
3 fveq2 6881 . . . . . 6 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq2d 7426 . . . . 5 (𝑥 = ∅ → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘∅)))
52, 4eqeq12d 2752 . . . 4 (𝑥 = ∅ → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅))))
65imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))))
7 oveq2 7418 . . . . . 6 (𝑥 = 𝑦 → (𝐴m 𝑥) = (𝐴m 𝑦))
87fveq2d 6885 . . . . 5 (𝑥 = 𝑦 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝑦)))
9 fveq2 6881 . . . . . 6 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
109oveq2d 7426 . . . . 5 (𝑥 = 𝑦 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝑦)))
118, 10eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)))))
13 oveq2 7418 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴m 𝑥) = (𝐴m (𝑦 ∪ {𝑧})))
1413fveq2d 6885 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m (𝑦 ∪ {𝑧}))))
15 fveq2 6881 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq2d 7426 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))
1714, 16eqeq12d 2752 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
1817imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
19 oveq2 7418 . . . . . 6 (𝑥 = 𝐵 → (𝐴m 𝑥) = (𝐴m 𝐵))
2019fveq2d 6885 . . . . 5 (𝑥 = 𝐵 → (♯‘(𝐴m 𝑥)) = (♯‘(𝐴m 𝐵)))
21 fveq2 6881 . . . . . 6 (𝑥 = 𝐵 → (♯‘𝑥) = (♯‘𝐵))
2221oveq2d 7426 . . . . 5 (𝑥 = 𝐵 → ((♯‘𝐴)↑(♯‘𝑥)) = ((♯‘𝐴)↑(♯‘𝐵)))
2320, 22eqeq12d 2752 . . . 4 (𝑥 = 𝐵 → ((♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥)) ↔ (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
2423imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑥)) = ((♯‘𝐴)↑(♯‘𝑥))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))))
25 hashcl 14379 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2625nn0cnd 12569 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2726exp0d 14163 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑0) = 1)
28 hash0 14390 . . . . . 6 (♯‘∅) = 0
2928oveq2i 7421 . . . . 5 ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0)
3029a1i 11 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)↑(♯‘∅)) = ((♯‘𝐴)↑0))
31 mapdm0 8861 . . . . . 6 (𝐴 ∈ Fin → (𝐴m ∅) = {∅})
3231fveq2d 6885 . . . . 5 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = (♯‘{∅}))
33 0ex 5282 . . . . . 6 ∅ ∈ V
34 hashsng 14392 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
3533, 34mp1i 13 . . . . 5 (𝐴 ∈ Fin → (♯‘{∅}) = 1)
3632, 35eqtrd 2771 . . . 4 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = 1)
3727, 30, 363eqtr4rd 2782 . . 3 (𝐴 ∈ Fin → (♯‘(𝐴m ∅)) = ((♯‘𝐴)↑(♯‘∅)))
38 oveq1 7417 . . . . . 6 ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
39 vex 3468 . . . . . . . . . . 11 𝑦 ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ V)
41 vsnex 5409 . . . . . . . . . . 11 {𝑧} ∈ V
4241a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → {𝑧} ∈ V)
43 elex 3485 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ V)
4443adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ V)
45 simprr 772 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
46 disjsn 4692 . . . . . . . . . . 11 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4745, 46sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
48 mapunen 9165 . . . . . . . . . 10 (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝐴 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
4940, 42, 44, 47, 48syl31anc 1375 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧})))
50 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐴 ∈ Fin)
51 simprl 770 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
52 snfi 9062 . . . . . . . . . . . 12 {𝑧} ∈ Fin
53 unfi 9190 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5451, 52, 53sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∪ {𝑧}) ∈ Fin)
55 mapfi 9365 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
5650, 54, 55syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m (𝑦 ∪ {𝑧})) ∈ Fin)
57 mapfi 9365 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝐴m 𝑦) ∈ Fin)
5857adantrr 717 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m 𝑦) ∈ Fin)
59 mapfi 9365 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴m {𝑧}) ∈ Fin)
6050, 52, 59sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ∈ Fin)
61 xpfi 9335 . . . . . . . . . . 11 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
6258, 60, 61syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin)
63 hashen 14370 . . . . . . . . . 10 (((𝐴m (𝑦 ∪ {𝑧})) ∈ Fin ∧ ((𝐴m 𝑦) × (𝐴m {𝑧})) ∈ Fin) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6456, 62, 63syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) ↔ (𝐴m (𝑦 ∪ {𝑧})) ≈ ((𝐴m 𝑦) × (𝐴m {𝑧}))))
6549, 64mpbird 257 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))))
66 hashxp 14457 . . . . . . . . 9 (((𝐴m 𝑦) ∈ Fin ∧ (𝐴m {𝑧}) ∈ Fin) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
6758, 60, 66syl2anc 584 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘((𝐴m 𝑦) × (𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))))
68 vex 3468 . . . . . . . . . . . 12 𝑧 ∈ V
6968a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ V)
7050, 69mapsnend 9055 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴m {𝑧}) ≈ 𝐴)
71 hashen 14370 . . . . . . . . . . 11 (((𝐴m {𝑧}) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7260, 50, 71syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m {𝑧})) = (♯‘𝐴) ↔ (𝐴m {𝑧}) ≈ 𝐴))
7370, 72mpbird 257 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m {𝑧})) = (♯‘𝐴))
7473oveq2d 7426 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) · (♯‘(𝐴m {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
7565, 67, 743eqtrd 2775 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)))
76 hashunsng 14415 . . . . . . . . . . 11 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
7776elv 3469 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7877adantl 481 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7978oveq2d 7426 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑((♯‘𝑦) + 1)))
8026adantr 480 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝐴) ∈ ℂ)
81 hashcl 14379 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
8281ad2antrl 728 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (♯‘𝑦) ∈ ℕ0)
8380, 82expp1d 14170 . . . . . . . 8 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑((♯‘𝑦) + 1)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8479, 83eqtrd 2771 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴)))
8575, 84eqeq12d 2752 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))) ↔ ((♯‘(𝐴m 𝑦)) · (♯‘𝐴)) = (((♯‘𝐴)↑(♯‘𝑦)) · (♯‘𝐴))))
8638, 85imbitrrid 246 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧})))))
8786expcom 413 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐴 ∈ Fin → ((♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦)) → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
8887a2d 29 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐴 ∈ Fin → (♯‘(𝐴m 𝑦)) = ((♯‘𝐴)↑(♯‘𝑦))) → (𝐴 ∈ Fin → (♯‘(𝐴m (𝑦 ∪ {𝑧}))) = ((♯‘𝐴)↑(♯‘(𝑦 ∪ {𝑧}))))))
896, 12, 18, 24, 37, 88findcard2s 9184 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))))
9089impcom 407 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  cin 3930  c0 4313  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  m cmap 8845  cen 8961  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  cexp 14084  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-exp 14085  df-hash 14354
This theorem is referenced by:  hashpw  14459  hashwrdn  14570  prmreclem2  16942  efmndhash  18859  birthdaylem2  26919
  Copyright terms: Public domain W3C validator