![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2pm2mplem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for mp2pm2mp 22804. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
mp2pm2mp.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mp2pm2mp.q | ⊢ 𝑄 = (Poly1‘𝐴) |
mp2pm2mp.l | ⊢ 𝐿 = (Base‘𝑄) |
mp2pm2mp.m | ⊢ · = ( ·𝑠 ‘𝑃) |
mp2pm2mp.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
mp2pm2mp.y | ⊢ 𝑌 = (var1‘𝑅) |
mp2pm2mp.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Ref | Expression |
---|---|
mp2pm2mplem1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mp.i | . 2 ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | |
2 | fveq2 6901 | . . . . . . . 8 ⊢ (𝑝 = 𝑂 → (coe1‘𝑝) = (coe1‘𝑂)) | |
3 | 2 | fveq1d 6903 | . . . . . . 7 ⊢ (𝑝 = 𝑂 → ((coe1‘𝑝)‘𝑘) = ((coe1‘𝑂)‘𝑘)) |
4 | 3 | oveqd 7441 | . . . . . 6 ⊢ (𝑝 = 𝑂 → (𝑖((coe1‘𝑝)‘𝑘)𝑗) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
5 | 4 | oveq1d 7439 | . . . . 5 ⊢ (𝑝 = 𝑂 → ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
6 | 5 | mpteq2dv 5255 | . . . 4 ⊢ (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
7 | 6 | oveq2d 7440 | . . 3 ⊢ (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
8 | 7 | mpoeq3dv 7504 | . 2 ⊢ (𝑝 = 𝑂 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
9 | simp3 1135 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) | |
10 | simp1 1133 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ Fin) | |
11 | mpoexga 8091 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) | |
12 | 10, 10, 11 | syl2anc 582 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) |
13 | 1, 8, 9, 12 | fvmptd3 7032 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 Fincfn 8974 ℕ0cn0 12524 Basecbs 17213 ·𝑠 cvsca 17270 Σg cgsu 17455 .gcmg 19061 mulGrpcmgp 20117 Ringcrg 20216 var1cv1 22165 Poly1cpl1 22166 coe1cco1 22167 Mat cmat 22398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 |
This theorem is referenced by: mp2pm2mplem3 22801 |
Copyright terms: Public domain | W3C validator |