![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2pm2mplem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for mp2pm2mp 21027. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
mp2pm2mp.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mp2pm2mp.q | ⊢ 𝑄 = (Poly1‘𝐴) |
mp2pm2mp.l | ⊢ 𝐿 = (Base‘𝑄) |
mp2pm2mp.m | ⊢ · = ( ·𝑠 ‘𝑃) |
mp2pm2mp.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
mp2pm2mp.y | ⊢ 𝑌 = (var1‘𝑅) |
mp2pm2mp.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Ref | Expression |
---|---|
mp2pm2mplem1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mp.i | . 2 ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | |
2 | fveq2 6448 | . . . . . . . 8 ⊢ (𝑝 = 𝑂 → (coe1‘𝑝) = (coe1‘𝑂)) | |
3 | 2 | fveq1d 6450 | . . . . . . 7 ⊢ (𝑝 = 𝑂 → ((coe1‘𝑝)‘𝑘) = ((coe1‘𝑂)‘𝑘)) |
4 | 3 | oveqd 6941 | . . . . . 6 ⊢ (𝑝 = 𝑂 → (𝑖((coe1‘𝑝)‘𝑘)𝑗) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
5 | 4 | oveq1d 6939 | . . . . 5 ⊢ (𝑝 = 𝑂 → ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
6 | 5 | mpteq2dv 4982 | . . . 4 ⊢ (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
7 | 6 | oveq2d 6940 | . . 3 ⊢ (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
8 | 7 | mpt2eq3dv 7000 | . 2 ⊢ (𝑝 = 𝑂 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
9 | simp3 1129 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) | |
10 | simp1 1127 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ Fin) | |
11 | mpt2exga 7528 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) | |
12 | 10, 10, 11 | syl2anc 579 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) |
13 | 1, 8, 9, 12 | fvmptd3 6566 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ↦ cmpt 4967 ‘cfv 6137 (class class class)co 6924 ↦ cmpt2 6926 Fincfn 8243 ℕ0cn0 11646 Basecbs 16259 ·𝑠 cvsca 16346 Σg cgsu 16491 .gcmg 17931 mulGrpcmgp 18880 Ringcrg 18938 var1cv1 19946 Poly1cpl1 19947 coe1cco1 19948 Mat cmat 20621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 |
This theorem is referenced by: mp2pm2mplem3 21024 |
Copyright terms: Public domain | W3C validator |