MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem1 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem1 22722
Description: Lemma 1 for mp2pm2mp 22727. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Assertion
Ref Expression
mp2pm2mplem1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝   𝑘,𝑂,𝑝   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝑃(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑅(𝑖,𝑗,𝑘)   · (𝑖,𝑗,𝑘)   𝐸(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐿(𝑖,𝑗,𝑘)   𝑁(𝑘)   𝑌(𝑖,𝑗,𝑘)

Proof of Theorem mp2pm2mplem1
StepHypRef Expression
1 mp2pm2mp.i . 2 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
2 fveq2 6822 . . . . . . . 8 (𝑝 = 𝑂 → (coe1𝑝) = (coe1𝑂))
32fveq1d 6824 . . . . . . 7 (𝑝 = 𝑂 → ((coe1𝑝)‘𝑘) = ((coe1𝑂)‘𝑘))
43oveqd 7363 . . . . . 6 (𝑝 = 𝑂 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑘)𝑗))
54oveq1d 7361 . . . . 5 (𝑝 = 𝑂 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))
65mpteq2dv 5185 . . . 4 (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))
76oveq2d 7362 . . 3 (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
87mpoeq3dv 7425 . 2 (𝑝 = 𝑂 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
9 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
10 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑁 ∈ Fin)
11 mpoexga 8009 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
1210, 10, 11syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
131, 8, 9, 12fvmptd3 6952 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  0cn0 12381  Basecbs 17120   ·𝑠 cvsca 17165   Σg cgsu 17344  .gcmg 18980  mulGrpcmgp 20059  Ringcrg 20152  var1cv1 22089  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922
This theorem is referenced by:  mp2pm2mplem3  22724
  Copyright terms: Public domain W3C validator