| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2pm2mplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for mp2pm2mp 22729. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| mp2pm2mp.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mp2pm2mp.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| mp2pm2mp.l | ⊢ 𝐿 = (Base‘𝑄) |
| mp2pm2mp.m | ⊢ · = ( ·𝑠 ‘𝑃) |
| mp2pm2mp.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
| mp2pm2mp.y | ⊢ 𝑌 = (var1‘𝑅) |
| mp2pm2mp.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Ref | Expression |
|---|---|
| mp2pm2mplem1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2pm2mp.i | . 2 ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | |
| 2 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑝 = 𝑂 → (coe1‘𝑝) = (coe1‘𝑂)) | |
| 3 | 2 | fveq1d 6832 | . . . . . . 7 ⊢ (𝑝 = 𝑂 → ((coe1‘𝑝)‘𝑘) = ((coe1‘𝑂)‘𝑘)) |
| 4 | 3 | oveqd 7371 | . . . . . 6 ⊢ (𝑝 = 𝑂 → (𝑖((coe1‘𝑝)‘𝑘)𝑗) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
| 5 | 4 | oveq1d 7369 | . . . . 5 ⊢ (𝑝 = 𝑂 → ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
| 6 | 5 | mpteq2dv 5189 | . . . 4 ⊢ (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
| 7 | 6 | oveq2d 7370 | . . 3 ⊢ (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
| 8 | 7 | mpoeq3dv 7433 | . 2 ⊢ (𝑝 = 𝑂 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| 9 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) | |
| 10 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ Fin) | |
| 11 | mpoexga 8017 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) | |
| 12 | 10, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) |
| 13 | 1, 8, 9, 12 | fvmptd3 6960 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 Fincfn 8877 ℕ0cn0 12390 Basecbs 17124 ·𝑠 cvsca 17169 Σg cgsu 17348 .gcmg 18984 mulGrpcmgp 20062 Ringcrg 20155 var1cv1 22091 Poly1cpl1 22092 coe1cco1 22093 Mat cmat 22325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 |
| This theorem is referenced by: mp2pm2mplem3 22726 |
| Copyright terms: Public domain | W3C validator |