| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mp2pm2mp.a | . . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 2 |  | mp2pm2mp.q | . . . . 5
⊢ 𝑄 = (Poly1‘𝐴) | 
| 3 |  | mp2pm2mp.l | . . . . 5
⊢ 𝐿 = (Base‘𝑄) | 
| 4 |  | mp2pm2mp.m | . . . . 5
⊢  · = (
·𝑠 ‘𝑃) | 
| 5 |  | mp2pm2mp.e | . . . . 5
⊢ 𝐸 =
(.g‘(mulGrp‘𝑃)) | 
| 6 |  | mp2pm2mp.y | . . . . 5
⊢ 𝑌 = (var1‘𝑅) | 
| 7 |  | mp2pm2mp.i | . . . . 5
⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | mp2pm2mplem1 22813 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | 
| 9 | 8 | oveq1d 7447 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → ((𝐼‘𝑂) decompPMat 𝐾) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾)) | 
| 10 | 9 | adantr 480 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾)) | 
| 11 |  | mp2pm2mplem2.p | . . . 4
⊢ 𝑃 = (Poly1‘𝑅) | 
| 12 |  | eqid 2736 | . . . 4
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | 
| 13 |  | eqid 2736 | . . . 4
⊢
(Base‘(𝑁 Mat
𝑃)) = (Base‘(𝑁 Mat 𝑃)) | 
| 14 | 1, 2, 3, 4, 5, 6, 7, 11, 12, 13 | mp2pm2mplem2 22814 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃))) | 
| 15 | 12, 13 | decpmatval 22772 | . . 3
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝐾 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾))) | 
| 16 | 14, 15 | sylan 580 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾))) | 
| 17 |  | eqidd 2737 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | 
| 18 |  | oveq12 7441 | . . . . . . . . . . 11
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖((coe1‘𝑂)‘𝑘)𝑗) = (𝑎((coe1‘𝑂)‘𝑘)𝑏)) | 
| 19 | 18 | oveq1d 7447 | . . . . . . . . . 10
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) | 
| 20 | 19 | mpteq2dv 5243 | . . . . . . . . 9
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) | 
| 21 | 20 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) | 
| 22 | 21 | adantl 481 | . . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) | 
| 23 |  | simp2 1137 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) | 
| 24 |  | simp3 1138 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) | 
| 25 |  | ovexd 7467 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) ∈ V) | 
| 26 | 17, 22, 23, 24, 25 | ovmpod 7586 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) | 
| 27 | 26 | fveq2d 6909 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏)) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))) | 
| 28 | 27 | fveq1d 6907 | . . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) | 
| 29 | 28 | mpoeq3dva 7511 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾))) | 
| 30 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑎 = 𝑖 → (𝑎((coe1‘𝑂)‘𝑘)𝑏) = (𝑖((coe1‘𝑂)‘𝑘)𝑏)) | 
| 31 | 30 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑎 = 𝑖 → ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) | 
| 32 | 31 | mpteq2dv 5243 | . . . . . . 7
⊢ (𝑎 = 𝑖 → (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) | 
| 33 | 32 | oveq2d 7448 | . . . . . 6
⊢ (𝑎 = 𝑖 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) | 
| 34 | 33 | fveq2d 6909 | . . . . 5
⊢ (𝑎 = 𝑖 → (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))) | 
| 35 | 34 | fveq1d 6907 | . . . 4
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) | 
| 36 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑗) | 
| 37 | 36 | oveq2d 7448 | . . . . . . . . 9
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1‘𝑂)‘𝑘)𝑏) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) | 
| 38 | 37 | oveq1d 7447 | . . . . . . . 8
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) | 
| 39 | 38 | mpteq2dva 5241 | . . . . . . 7
⊢ (𝑏 = 𝑗 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) | 
| 40 | 39 | oveq2d 7448 | . . . . . 6
⊢ (𝑏 = 𝑗 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) | 
| 41 | 40 | fveq2d 6909 | . . . . 5
⊢ (𝑏 = 𝑗 → (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | 
| 42 | 41 | fveq1d 6907 | . . . 4
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) | 
| 43 | 35, 42 | cbvmpov 7529 | . . 3
⊢ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) | 
| 44 | 29, 43 | eqtrdi 2792 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) | 
| 45 | 10, 16, 44 | 3eqtrd 2780 | 1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) |