MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem3 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem3 22301
Description: Lemma 3 for mp2pm2mp 22304. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a ๐ด = (๐‘ Mat ๐‘…)
mp2pm2mp.q ๐‘„ = (Poly1โ€˜๐ด)
mp2pm2mp.l ๐ฟ = (Baseโ€˜๐‘„)
mp2pm2mp.m ยท = ( ยท๐‘  โ€˜๐‘ƒ)
mp2pm2mp.e ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
mp2pm2mp.y ๐‘Œ = (var1โ€˜๐‘…)
mp2pm2mp.i ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
mp2pm2mplem2.p ๐‘ƒ = (Poly1โ€˜๐‘…)
Assertion
Ref Expression
mp2pm2mplem3 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)))
Distinct variable groups:   ๐ธ,๐‘   ๐ฟ,๐‘   ๐‘–,๐‘,๐‘—,๐‘   ๐‘–,๐‘‚,๐‘—,๐‘,๐‘˜   ๐‘ƒ,๐‘   ๐‘…,๐‘   ๐‘Œ,๐‘   ยท ,๐‘   ๐‘˜,๐ฟ   ๐‘ƒ,๐‘–,๐‘—,๐‘˜   ๐‘…,๐‘˜   ยท ,๐‘˜   ๐‘–,๐ธ,๐‘—   ๐‘–,๐พ,๐‘—   ๐‘–,๐ฟ,๐‘—   ๐‘˜,๐‘   ๐‘…,๐‘–,๐‘—   ๐‘–,๐‘Œ,๐‘—   ยท ,๐‘–,๐‘—
Allowed substitution hints:   ๐ด(๐‘–,๐‘—,๐‘˜,๐‘)   ๐‘„(๐‘–,๐‘—,๐‘˜,๐‘)   ๐ธ(๐‘˜)   ๐ผ(๐‘–,๐‘—,๐‘˜,๐‘)   ๐พ(๐‘˜,๐‘)   ๐‘Œ(๐‘˜)

Proof of Theorem mp2pm2mplem3
Dummy variables ๐‘Ž ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . . . 5 ๐ด = (๐‘ Mat ๐‘…)
2 mp2pm2mp.q . . . . 5 ๐‘„ = (Poly1โ€˜๐ด)
3 mp2pm2mp.l . . . . 5 ๐ฟ = (Baseโ€˜๐‘„)
4 mp2pm2mp.m . . . . 5 ยท = ( ยท๐‘  โ€˜๐‘ƒ)
5 mp2pm2mp.e . . . . 5 ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
6 mp2pm2mp.y . . . . 5 ๐‘Œ = (var1โ€˜๐‘…)
7 mp2pm2mp.i . . . . 5 ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
81, 2, 3, 4, 5, 6, 7mp2pm2mplem1 22299 . . . 4 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐ผโ€˜๐‘‚) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
98oveq1d 7420 . . 3 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = ((๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) decompPMat ๐พ))
109adantr 481 . 2 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = ((๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) decompPMat ๐พ))
11 mp2pm2mplem2.p . . . 4 ๐‘ƒ = (Poly1โ€˜๐‘…)
12 eqid 2732 . . . 4 (๐‘ Mat ๐‘ƒ) = (๐‘ Mat ๐‘ƒ)
13 eqid 2732 . . . 4 (Baseโ€˜(๐‘ Mat ๐‘ƒ)) = (Baseโ€˜(๐‘ Mat ๐‘ƒ))
141, 2, 3, 4, 5, 6, 7, 11, 12, 13mp2pm2mplem2 22300 . . 3 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) โˆˆ (Baseโ€˜(๐‘ Mat ๐‘ƒ)))
1512, 13decpmatval 22258 . . 3 (((๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) โˆˆ (Baseโ€˜(๐‘ Mat ๐‘ƒ)) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) decompPMat ๐พ) = (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘))โ€˜๐พ)))
1614, 15sylan 580 . 2 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) decompPMat ๐พ) = (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘))โ€˜๐พ)))
17 eqidd 2733 . . . . . . 7 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
18 oveq12 7414 . . . . . . . . . . 11 ((๐‘– = ๐‘Ž โˆง ๐‘— = ๐‘) โ†’ (๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) = (๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘))
1918oveq1d 7420 . . . . . . . . . 10 ((๐‘– = ๐‘Ž โˆง ๐‘— = ๐‘) โ†’ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)) = ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))
2019mpteq2dv 5249 . . . . . . . . 9 ((๐‘– = ๐‘Ž โˆง ๐‘— = ๐‘) โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))
2120oveq2d 7421 . . . . . . . 8 ((๐‘– = ๐‘Ž โˆง ๐‘— = ๐‘) โ†’ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))) = (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))
2221adantl 482 . . . . . . 7 (((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โˆง (๐‘– = ๐‘Ž โˆง ๐‘— = ๐‘)) โ†’ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))) = (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))
23 simp2 1137 . . . . . . 7 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ ๐‘Ž โˆˆ ๐‘)
24 simp3 1138 . . . . . . 7 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ ๐‘ โˆˆ ๐‘)
25 ovexd 7440 . . . . . . 7 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))) โˆˆ V)
2617, 22, 23, 24, 25ovmpod 7556 . . . . . 6 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ (๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘) = (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))
2726fveq2d 6892 . . . . 5 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ (coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘)) = (coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))))
2827fveq1d 6890 . . . 4 ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โˆง ๐‘Ž โˆˆ ๐‘ โˆง ๐‘ โˆˆ ๐‘) โ†’ ((coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘))โ€˜๐พ) = ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ))
2928mpoeq3dva 7482 . . 3 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘))โ€˜๐พ)) = (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)))
30 oveq1 7412 . . . . . . . . 9 (๐‘Ž = ๐‘– โ†’ (๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) = (๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘))
3130oveq1d 7420 . . . . . . . 8 (๐‘Ž = ๐‘– โ†’ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)) = ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))
3231mpteq2dv 5249 . . . . . . 7 (๐‘Ž = ๐‘– โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))
3332oveq2d 7421 . . . . . 6 (๐‘Ž = ๐‘– โ†’ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))) = (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))
3433fveq2d 6892 . . . . 5 (๐‘Ž = ๐‘– โ†’ (coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))) = (coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))))
3534fveq1d 6890 . . . 4 (๐‘Ž = ๐‘– โ†’ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ) = ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ))
36 simpl 483 . . . . . . . . . 10 ((๐‘ = ๐‘— โˆง ๐‘˜ โˆˆ โ„•0) โ†’ ๐‘ = ๐‘—)
3736oveq2d 7421 . . . . . . . . 9 ((๐‘ = ๐‘— โˆง ๐‘˜ โˆˆ โ„•0) โ†’ (๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) = (๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—))
3837oveq1d 7420 . . . . . . . 8 ((๐‘ = ๐‘— โˆง ๐‘˜ โˆˆ โ„•0) โ†’ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)) = ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))
3938mpteq2dva 5247 . . . . . . 7 (๐‘ = ๐‘— โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))
4039oveq2d 7421 . . . . . 6 (๐‘ = ๐‘— โ†’ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))) = (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))
4140fveq2d 6892 . . . . 5 (๐‘ = ๐‘— โ†’ (coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ))))) = (coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
4241fveq1d 6890 . . . 4 (๐‘ = ๐‘— โ†’ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ) = ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ))
4335, 42cbvmpov 7500 . . 3 (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘Ž((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ))
4429, 43eqtrdi 2788 . 2 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ (๐‘Ž โˆˆ ๐‘, ๐‘ โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘Ž(๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))๐‘))โ€˜๐พ)) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)))
4510, 16, 443eqtrd 2776 1 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  Vcvv 3474   โ†ฆ cmpt 5230  โ€˜cfv 6540  (class class class)co 7405   โˆˆ cmpo 7407  Fincfn 8935  โ„•0cn0 12468  Basecbs 17140   ยท๐‘  cvsca 17197   ฮฃg cgsu 17382  .gcmg 18944  mulGrpcmgp 19981  Ringcrg 20049  var1cv1 21691  Poly1cpl1 21692  coe1cco1 21693   Mat cmat 21898   decompPMat cdecpmat 22255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-mat 21899  df-decpmat 22256
This theorem is referenced by:  mp2pm2mplem4  22302
  Copyright terms: Public domain W3C validator