MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem3 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem3 21559
Description: Lemma 3 for mp2pm2mp 21562. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐸(𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑘,𝑝)   𝑌(𝑘)

Proof of Theorem mp2pm2mplem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . . . 5 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . . . 5 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . . . 5 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . . . 5 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . . . 5 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
81, 2, 3, 4, 5, 6, 7mp2pm2mplem1 21557 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
98oveq1d 7185 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ((𝐼𝑂) decompPMat 𝐾) = ((𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾))
109adantr 484 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾))
11 mp2pm2mplem2.p . . . 4 𝑃 = (Poly1𝑅)
12 eqid 2738 . . . 4 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
13 eqid 2738 . . . 4 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
141, 2, 3, 4, 5, 6, 7, 11, 12, 13mp2pm2mplem2 21558 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃)))
1512, 13decpmatval 21516 . . 3 (((𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)))
1614, 15sylan 583 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)))
17 eqidd 2739 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
18 oveq12 7179 . . . . . . . . . . 11 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑎((coe1𝑂)‘𝑘)𝑏))
1918oveq1d 7185 . . . . . . . . . 10 ((𝑖 = 𝑎𝑗 = 𝑏) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))
2019mpteq2dv 5126 . . . . . . . . 9 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))
2120oveq2d 7186 . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))
2221adantl 485 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))
23 simp2 1138 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
24 simp3 1139 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
25 ovexd 7205 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) ∈ V)
2617, 22, 23, 24, 25ovmpod 7317 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))
2726fveq2d 6678 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏)) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))))
2827fveq1d 6676 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾))
2928mpoeq3dva 7245 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)))
30 oveq1 7177 . . . . . . . . 9 (𝑎 = 𝑖 → (𝑎((coe1𝑂)‘𝑘)𝑏) = (𝑖((coe1𝑂)‘𝑘)𝑏))
3130oveq1d 7185 . . . . . . . 8 (𝑎 = 𝑖 → ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))
3231mpteq2dv 5126 . . . . . . 7 (𝑎 = 𝑖 → (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))
3332oveq2d 7186 . . . . . 6 (𝑎 = 𝑖 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))
3433fveq2d 6678 . . . . 5 (𝑎 = 𝑖 → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))))
3534fveq1d 6676 . . . 4 (𝑎 = 𝑖 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾))
36 simpl 486 . . . . . . . . . 10 ((𝑏 = 𝑗𝑘 ∈ ℕ0) → 𝑏 = 𝑗)
3736oveq2d 7186 . . . . . . . . 9 ((𝑏 = 𝑗𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑏) = (𝑖((coe1𝑂)‘𝑘)𝑗))
3837oveq1d 7185 . . . . . . . 8 ((𝑏 = 𝑗𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))
3938mpteq2dva 5125 . . . . . . 7 (𝑏 = 𝑗 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))
4039oveq2d 7186 . . . . . 6 (𝑏 = 𝑗 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
4140fveq2d 6678 . . . . 5 (𝑏 = 𝑗 → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
4241fveq1d 6676 . . . 4 (𝑏 = 𝑗 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
4335, 42cbvmpov 7263 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
4429, 43eqtrdi 2789 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎𝑁, 𝑏𝑁 ↦ ((coe1‘(𝑎(𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
4510, 16, 443eqtrd 2777 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3398  cmpt 5110  cfv 6339  (class class class)co 7170  cmpo 7172  Fincfn 8555  0cn0 11976  Basecbs 16586   ·𝑠 cvsca 16672   Σg cgsu 16817  .gcmg 18342  mulGrpcmgp 19358  Ringcrg 19416  var1cv1 20951  Poly1cpl1 20952  coe1cco1 20953   Mat cmat 21158   decompPMat cdecpmat 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-ot 4525  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-sup 8979  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-fzo 13125  df-seq 13461  df-hash 13783  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-hom 16692  df-cco 16693  df-0g 16818  df-gsum 16819  df-prds 16824  df-pws 16826  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-mulg 18343  df-subg 18394  df-ghm 18474  df-cntz 18565  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-subrg 19652  df-lmod 19755  df-lss 19823  df-sra 20063  df-rgmod 20064  df-dsmm 20548  df-frlm 20563  df-psr 20722  df-mvr 20723  df-mpl 20724  df-opsr 20726  df-psr1 20955  df-vr1 20956  df-ply1 20957  df-coe1 20958  df-mat 21159  df-decpmat 21514
This theorem is referenced by:  mp2pm2mplem4  21560
  Copyright terms: Public domain W3C validator