Step | Hyp | Ref
| Expression |
1 | | mp2pm2mp.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | mp2pm2mp.q |
. . . . 5
⊢ 𝑄 = (Poly1‘𝐴) |
3 | | mp2pm2mp.l |
. . . . 5
⊢ 𝐿 = (Base‘𝑄) |
4 | | mp2pm2mp.m |
. . . . 5
⊢ · = (
·𝑠 ‘𝑃) |
5 | | mp2pm2mp.e |
. . . . 5
⊢ 𝐸 =
(.g‘(mulGrp‘𝑃)) |
6 | | mp2pm2mp.y |
. . . . 5
⊢ 𝑌 = (var1‘𝑅) |
7 | | mp2pm2mp.i |
. . . . 5
⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
8 | 1, 2, 3, 4, 5, 6, 7 | mp2pm2mplem1 21955 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
9 | 8 | oveq1d 7290 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → ((𝐼‘𝑂) decompPMat 𝐾) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾)) |
10 | 9 | adantr 481 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾)) |
11 | | mp2pm2mplem2.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | eqid 2738 |
. . . 4
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) |
13 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝑁 Mat
𝑃)) = (Base‘(𝑁 Mat 𝑃)) |
14 | 1, 2, 3, 4, 5, 6, 7, 11, 12, 13 | mp2pm2mplem2 21956 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃))) |
15 | 12, 13 | decpmatval 21914 |
. . 3
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝐾 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾))) |
16 | 14, 15 | sylan 580 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) decompPMat 𝐾) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾))) |
17 | | eqidd 2739 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
18 | | oveq12 7284 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖((coe1‘𝑂)‘𝑘)𝑗) = (𝑎((coe1‘𝑂)‘𝑘)𝑏)) |
19 | 18 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) |
20 | 19 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) |
21 | 20 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) |
23 | | simp2 1136 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
24 | | simp3 1137 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
25 | | ovexd 7310 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) ∈ V) |
26 | 17, 22, 23, 24, 25 | ovmpod 7425 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) |
27 | 26 | fveq2d 6778 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏)) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))) |
28 | 27 | fveq1d 6776 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) |
29 | 28 | mpoeq3dva 7352 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾))) |
30 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑎 = 𝑖 → (𝑎((coe1‘𝑂)‘𝑘)𝑏) = (𝑖((coe1‘𝑂)‘𝑘)𝑏)) |
31 | 30 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑎 = 𝑖 → ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) |
32 | 31 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑎 = 𝑖 → (𝑘 ∈ ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) |
33 | 32 | oveq2d 7291 |
. . . . . 6
⊢ (𝑎 = 𝑖 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) |
34 | 33 | fveq2d 6778 |
. . . . 5
⊢ (𝑎 = 𝑖 → (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))) |
35 | 34 | fveq1d 6776 |
. . . 4
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) |
36 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑗) |
37 | 36 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1‘𝑂)‘𝑘)𝑏) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
38 | 37 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
39 | 38 | mpteq2dva 5174 |
. . . . . . 7
⊢ (𝑏 = 𝑗 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
40 | 39 | oveq2d 7291 |
. . . . . 6
⊢ (𝑏 = 𝑗 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
41 | 40 | fveq2d 6778 |
. . . . 5
⊢ (𝑏 = 𝑗 → (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
42 | 41 | fveq1d 6776 |
. . . 4
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) |
43 | 35, 42 | cbvmpov 7370 |
. . 3
⊢ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑎((coe1‘𝑂)‘𝑘)𝑏) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) |
44 | 29, 43 | eqtrdi 2794 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((coe1‘(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))𝑏))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) |
45 | 10, 16, 44 | 3eqtrd 2782 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) |