MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mp Structured version   Visualization version   GIF version

Theorem mp2pm2mp 22736
Description: A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
mp2pm2mp.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
mp2pm2mp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = 𝑂)
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑇(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)

Proof of Theorem mp2pm2mp
Dummy variables 𝑛 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . . 4 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . . 4 𝐿 = (Base‘𝑄)
4 mp2pm2mplem2.p . . . 4 𝑃 = (Poly1𝑅)
5 mp2pm2mp.m . . . 4 · = ( ·𝑠𝑃)
6 mp2pm2mp.e . . . 4 𝐸 = (.g‘(mulGrp‘𝑃))
7 mp2pm2mp.y . . . 4 𝑌 = (var1𝑅)
8 mp2pm2mp.i . . . 4 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
9 eqid 2733 . . . 4 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
10 eqid 2733 . . . 4 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mply1topmatcl 22730 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
12 eqid 2733 . . . 4 ( ·𝑠𝑄) = ( ·𝑠𝑄)
13 eqid 2733 . . . 4 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
14 eqid 2733 . . . 4 (var1𝐴) = (var1𝐴)
15 mp2pm2mp.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
164, 9, 10, 12, 13, 14, 1, 2, 15pm2mpfval 22721 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃))) → (𝑇‘(𝐼𝑂)) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
1711, 16syld3an3 1411 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
181matring 22368 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
19183adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 ∈ Ring)
20 eqid 2733 . . . . 5 (0g𝑄) = (0g𝑄)
212ply1ring 22170 . . . . . . 7 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
22 ringcmn 20210 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
2318, 21, 223syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
24233adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑄 ∈ CMnd)
25 nn0ex 12397 . . . . . 6 0 ∈ V
2625a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ℕ0 ∈ V)
2719adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
28 simpl2 1193 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
2911adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
30 simpr 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
31 eqid 2733 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
324, 9, 10, 1, 31decpmatcl 22692 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴))
3328, 29, 30, 32syl3anc 1373 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴))
34 eqid 2733 . . . . . . . 8 (mulGrp‘𝑄) = (mulGrp‘𝑄)
3531, 2, 14, 12, 34, 13, 3ply1tmcl 22196 . . . . . . 7 ((𝐴 ∈ Ring ∧ ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ 𝐿)
3627, 33, 30, 35syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ 𝐿)
3736fmpttd 7057 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0𝐿)
38 fveq2 6831 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((coe1𝑝)‘𝑘) = ((coe1𝑝)‘𝑛))
3938oveqd 7372 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑝)‘𝑛)𝑗))
40 oveq1 7362 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘𝐸𝑌) = (𝑛𝐸𝑌))
4139, 40oveq12d 7373 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))
4241cbvmptv 5199 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))
4342a1i 11 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))
4443oveq2d 7371 . . . . . . . . 9 ((𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))))
4544mpoeq3ia 7433 . . . . . . . 8 (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))))
4645mpteq2i 5191 . . . . . . 7 (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))))
478, 46eqtri 2756 . . . . . 6 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))))
481, 2, 3, 5, 6, 7, 47, 4, 12, 13, 14mp2pm2mplem5 22735 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
493, 20, 24, 26, 37, 48gsumcl 19837 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿)
50 simp3 1138 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
5119, 49, 503jca 1128 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐴 ∈ Ring ∧ (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿𝑂𝐿))
521, 2, 3, 5, 6, 7, 8, 4mp2pm2mplem4 22734 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) = ((coe1𝑂)‘𝑛))
5352oveq1d 7370 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) = (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))
5453adantlr 715 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) = (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))
5554mpteq2dva 5188 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))
5655oveq2d 7371 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
5756fveq2d 6835 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
5857fveq1d 6833 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
5919, 50jca 511 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐴 ∈ Ring ∧ 𝑂𝐿))
6059adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝐴 ∈ Ring ∧ 𝑂𝐿))
61 eqid 2733 . . . . . . . . . 10 (coe1𝑂) = (coe1𝑂)
622, 14, 3, 12, 34, 13, 61ply1coe 22223 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ 𝑂𝐿) → 𝑂 = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
6360, 62syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → 𝑂 = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
6463eqcomd 2739 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂)
6564fveq2d 6835 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1𝑂))
6665fveq1d 6833 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
6758, 66eqtrd 2768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
6867ralrimiva 3126 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ∀𝑙 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
69 eqid 2733 . . . 4 (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
702, 3, 69, 61eqcoe1ply1eq 22224 . . 3 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿𝑂𝐿) → (∀𝑙 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂))
7151, 68, 70sylc 65 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂)
7217, 71eqtrd 2768 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  cmpt 5176  cfv 6489  (class class class)co 7355  cmpo 7357  Fincfn 8878  0cn0 12391  Basecbs 17130   ·𝑠 cvsca 17175  0gc0g 17353   Σg cgsu 17354  .gcmg 18990  CMndccmn 19702  mulGrpcmgp 20068  Ringcrg 20161  var1cv1 22098  Poly1cpl1 22099  coe1cco1 22100   Mat cmat 22332   decompPMat cdecpmat 22687   pMatToMatPoly cpm2mp 22717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-hom 17195  df-cco 17196  df-0g 17355  df-gsum 17356  df-prds 17361  df-pws 17363  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-srg 20115  df-ring 20163  df-subrng 20471  df-subrg 20495  df-lmod 20805  df-lss 20875  df-sra 21117  df-rgmod 21118  df-dsmm 21679  df-frlm 21694  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mamu 22316  df-mat 22333  df-decpmat 22688  df-pm2mp 22718
This theorem is referenced by:  pm2mpfo  22739
  Copyright terms: Public domain W3C validator