MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mp Structured version   Visualization version   GIF version

Theorem mp2pm2mp 22719
Description: A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
mp2pm2mp.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
mp2pm2mp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = 𝑂)
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑇(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)

Proof of Theorem mp2pm2mp
Dummy variables 𝑛 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . . 4 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . . 4 𝐿 = (Base‘𝑄)
4 mp2pm2mplem2.p . . . 4 𝑃 = (Poly1𝑅)
5 mp2pm2mp.m . . . 4 · = ( ·𝑠𝑃)
6 mp2pm2mp.e . . . 4 𝐸 = (.g‘(mulGrp‘𝑃))
7 mp2pm2mp.y . . . 4 𝑌 = (var1𝑅)
8 mp2pm2mp.i . . . 4 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
9 eqid 2730 . . . 4 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
10 eqid 2730 . . . 4 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mply1topmatcl 22713 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
12 eqid 2730 . . . 4 ( ·𝑠𝑄) = ( ·𝑠𝑄)
13 eqid 2730 . . . 4 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
14 eqid 2730 . . . 4 (var1𝐴) = (var1𝐴)
15 mp2pm2mp.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
164, 9, 10, 12, 13, 14, 1, 2, 15pm2mpfval 22704 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃))) → (𝑇‘(𝐼𝑂)) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
1711, 16syld3an3 1411 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
181matring 22351 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
19183adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 ∈ Ring)
20 eqid 2730 . . . . 5 (0g𝑄) = (0g𝑄)
212ply1ring 22153 . . . . . . 7 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
22 ringcmn 20193 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
2318, 21, 223syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
24233adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑄 ∈ CMnd)
25 nn0ex 12379 . . . . . 6 0 ∈ V
2625a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ℕ0 ∈ V)
2719adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
28 simpl2 1193 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
2911adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
30 simpr 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
31 eqid 2730 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
324, 9, 10, 1, 31decpmatcl 22675 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴))
3328, 29, 30, 32syl3anc 1373 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴))
34 eqid 2730 . . . . . . . 8 (mulGrp‘𝑄) = (mulGrp‘𝑄)
3531, 2, 14, 12, 34, 13, 3ply1tmcl 22179 . . . . . . 7 ((𝐴 ∈ Ring ∧ ((𝐼𝑂) decompPMat 𝑛) ∈ (Base‘𝐴) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ 𝐿)
3627, 33, 30, 35syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) ∈ 𝐿)
3736fmpttd 7043 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))):ℕ0𝐿)
38 fveq2 6817 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((coe1𝑝)‘𝑘) = ((coe1𝑝)‘𝑛))
3938oveqd 7358 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑝)‘𝑛)𝑗))
40 oveq1 7348 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘𝐸𝑌) = (𝑛𝐸𝑌))
4139, 40oveq12d 7359 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))
4241cbvmptv 5193 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))
4342a1i 11 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))
4443oveq2d 7357 . . . . . . . . 9 ((𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))))
4544mpoeq3ia 7419 . . . . . . . 8 (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌)))))
4645mpteq2i 5185 . . . . . . 7 (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))))
478, 46eqtri 2753 . . . . . 6 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑛)𝑗) · (𝑛𝐸𝑌))))))
481, 2, 3, 5, 6, 7, 47, 4, 12, 13, 14mp2pm2mplem5 22718 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))) finSupp (0g𝑄))
493, 20, 24, 26, 37, 48gsumcl 19820 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿)
50 simp3 1138 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
5119, 49, 503jca 1128 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐴 ∈ Ring ∧ (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿𝑂𝐿))
521, 2, 3, 5, 6, 7, 8, 4mp2pm2mplem4 22717 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑛) = ((coe1𝑂)‘𝑛))
5352oveq1d 7356 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) = (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))
5453adantlr 715 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))) = (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))
5554mpteq2dva 5182 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))) = (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))
5655oveq2d 7357 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
5756fveq2d 6821 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))))
5857fveq1d 6819 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙))
5919, 50jca 511 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐴 ∈ Ring ∧ 𝑂𝐿))
6059adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝐴 ∈ Ring ∧ 𝑂𝐿))
61 eqid 2730 . . . . . . . . . 10 (coe1𝑂) = (coe1𝑂)
622, 14, 3, 12, 34, 13, 61ply1coe 22206 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ 𝑂𝐿) → 𝑂 = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
6360, 62syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → 𝑂 = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
6463eqcomd 2736 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂)
6564fveq2d 6821 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1𝑂))
6665fveq1d 6819 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝑂)‘𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
6758, 66eqtrd 2765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑙 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
6867ralrimiva 3122 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ∀𝑙 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙))
69 eqid 2730 . . . 4 (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴)))))) = (coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))
702, 3, 69, 61eqcoe1ply1eq 22207 . . 3 ((𝐴 ∈ Ring ∧ (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) ∈ 𝐿𝑂𝐿) → (∀𝑙 ∈ ℕ0 ((coe1‘(𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))))‘𝑙) = ((coe1𝑂)‘𝑙) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂))
7151, 68, 70sylc 65 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑛)( ·𝑠𝑄)(𝑛(.g‘(mulGrp‘𝑄))(var1𝐴))))) = 𝑂)
7217, 71eqtrd 2765 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  cmpt 5170  cfv 6477  (class class class)co 7341  cmpo 7343  Fincfn 8864  0cn0 12373  Basecbs 17112   ·𝑠 cvsca 17157  0gc0g 17335   Σg cgsu 17336  .gcmg 18972  CMndccmn 19685  mulGrpcmgp 20051  Ringcrg 20144  var1cv1 22081  Poly1cpl1 22082  coe1cco1 22083   Mat cmat 22315   decompPMat cdecpmat 22670   pMatToMatPoly cpm2mp 22700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-srg 20098  df-ring 20146  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-psr 21839  df-mvr 21840  df-mpl 21841  df-opsr 21843  df-psr1 22085  df-vr1 22086  df-ply1 22087  df-coe1 22088  df-mamu 22299  df-mat 22316  df-decpmat 22671  df-pm2mp 22701
This theorem is referenced by:  pm2mpfo  22722
  Copyright terms: Public domain W3C validator