Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfioo2 | Structured version Visualization version GIF version |
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
dfioo2 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 12922 | . . . 4 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 6505 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (,) Fn (ℝ* × ℝ*) |
4 | fnov 7298 | . . 3 ⊢ ((,) Fn (ℝ* × ℝ*) ↔ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦))) | |
5 | 3, 4 | mpbi 233 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) |
6 | iooval2 12855 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) | |
7 | 6 | mpoeq3ia 7247 | . 2 ⊢ (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
8 | 5, 7 | eqtri 2761 | 1 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 {crab 3057 𝒫 cpw 4489 class class class wbr 5031 × cxp 5524 Fn wfn 6335 ⟶wf 6336 (class class class)co 7171 ∈ cmpo 7173 ℝcr 10615 ℝ*cxr 10753 < clt 10754 (,)cioo 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-pre-lttri 10690 ax-pre-lttrn 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-1st 7715 df-2nd 7716 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-ioo 12826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |