![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfioo2 | Structured version Visualization version GIF version |
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
dfioo2 | β’ (,) = (π₯ β β*, π¦ β β* β¦ {π€ β β β£ (π₯ < π€ β§ π€ < π¦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13428 | . . . 4 β’ (,):(β* Γ β*)βΆπ« β | |
2 | ffn 6717 | . . . 4 β’ ((,):(β* Γ β*)βΆπ« β β (,) Fn (β* Γ β*)) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ (,) Fn (β* Γ β*) |
4 | fnov 7542 | . . 3 β’ ((,) Fn (β* Γ β*) β (,) = (π₯ β β*, π¦ β β* β¦ (π₯(,)π¦))) | |
5 | 3, 4 | mpbi 229 | . 2 β’ (,) = (π₯ β β*, π¦ β β* β¦ (π₯(,)π¦)) |
6 | iooval2 13361 | . . 3 β’ ((π₯ β β* β§ π¦ β β*) β (π₯(,)π¦) = {π€ β β β£ (π₯ < π€ β§ π€ < π¦)}) | |
7 | 6 | mpoeq3ia 7489 | . 2 β’ (π₯ β β*, π¦ β β* β¦ (π₯(,)π¦)) = (π₯ β β*, π¦ β β* β¦ {π€ β β β£ (π₯ < π€ β§ π€ < π¦)}) |
8 | 5, 7 | eqtri 2760 | 1 β’ (,) = (π₯ β β*, π¦ β β* β¦ {π€ β β β£ (π₯ < π€ β§ π€ < π¦)}) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 {crab 3432 π« cpw 4602 class class class wbr 5148 Γ cxp 5674 Fn wfn 6538 βΆwf 6539 (class class class)co 7411 β cmpo 7413 βcr 11111 β*cxr 11251 < clt 11252 (,)cioo 13328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |