MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfioo2 Structured version   Visualization version   GIF version

Theorem dfioo2 13510
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Distinct variable group:   𝑥,𝑤,𝑦

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 13507 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6747 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
31, 2ax-mp 5 . . 3 (,) Fn (ℝ* × ℝ*)
4 fnov 7581 . . 3 ((,) Fn (ℝ* × ℝ*) ↔ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)))
53, 4mpbi 230 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦))
6 iooval2 13440 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
76mpoeq3ia 7528 . 2 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
85, 7eqtri 2768 1 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  {crab 3443  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  (class class class)co 7448  cmpo 7450  cr 11183  *cxr 11323   < clt 11324  (,)cioo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator