Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudis Structured version   Visualization version   GIF version

Theorem ehl1eudis 24027
 Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑m {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl1eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11910 . . 3 1 ∈ ℕ0
2 1z 12009 . . . . . 6 1 ∈ ℤ
3 fzsn 12953 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
42, 3ax-mp 5 . . . . 5 (1...1) = {1}
54eqcomi 2833 . . . 4 {1} = (1...1)
6 ehl1eudis.e . . . 4 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . . 4 𝑋 = (ℝ ↑m {1})
8 ehl1eudis.d . . . 4 𝐷 = (dist‘𝐸)
95, 6, 7, 8ehleudis 24025 . . 3 (1 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))))
101, 9ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)))
117eleq2i 2907 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1}))
12 reex 10626 . . . . . . . . . . . . 13 ℝ ∈ V
13 snex 5319 . . . . . . . . . . . . 13 {1} ∈ V
1412, 13elmap 8431 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1}) ↔ 𝑓:{1}⟶ℝ)
1511, 14bitri 278 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1}⟶ℝ)
16 id 22 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ)
17 1ex 10635 . . . . . . . . . . . . . 14 1 ∈ V
1817snid 4586 . . . . . . . . . . . . 13 1 ∈ {1}
1918a1i 11 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 1 ∈ {1})
2016, 19ffvelrnd 6843 . . . . . . . . . . 11 (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ)
2115, 20sylbi 220 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2221adantr 484 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
237eleq2i 2907 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1}))
2412, 13elmap 8431 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1}) ↔ 𝑔:{1}⟶ℝ)
2523, 24bitri 278 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1}⟶ℝ)
26 id 22 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ)
2718a1i 11 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 1 ∈ {1})
2826, 27ffvelrnd 6843 . . . . . . . . . . 11 (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ)
2925, 28sylbi 220 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3029adantl 485 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3122, 30resubcld 11066 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3231resqcld 13616 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3332recnd 10667 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
34 fveq2 6661 . . . . . . . . 9 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
35 fveq2 6661 . . . . . . . . 9 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
3634, 35oveq12d 7167 . . . . . . . 8 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
3736oveq1d 7164 . . . . . . 7 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
3837sumsn 15101 . . . . . 6 ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
392, 33, 38sylancr 590 . . . . 5 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
4039fveq2d 6665 . . . 4 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4131absred 14776 . . . 4 ((𝑓𝑋𝑔𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4240, 41eqtr4d 2862 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1))))
4342mpoeq3ia 7225 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
4410, 43eqtri 2847 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {csn 4550  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151   ↑m cmap 8402  ℂcc 10533  ℝcr 10534  1c1 10536   − cmin 10868  2c2 11689  ℕ0cn0 11894  ℤcz 11978  ...cfz 12894  ↑cexp 13434  √csqrt 14592  abscabs 14593  Σcsu 15042  distcds 16574  𝔼hilcehl 23991 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-rnghom 19470  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-nm 23192  df-tng 23194  df-tcph 23777  df-rrx 23992  df-ehl 23993 This theorem is referenced by:  ehl1eudisval  24028
 Copyright terms: Public domain W3C validator