Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ehl1eudis | Structured version Visualization version GIF version |
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
ehl1eudis.e | ⊢ 𝐸 = (𝔼hil‘1) |
ehl1eudis.x | ⊢ 𝑋 = (ℝ ↑m {1}) |
ehl1eudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehl1eudis | ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12179 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 1z 12280 | . . . . . 6 ⊢ 1 ∈ ℤ | |
3 | fzsn 13227 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1...1) = {1} |
5 | 4 | eqcomi 2747 | . . . 4 ⊢ {1} = (1...1) |
6 | ehl1eudis.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘1) | |
7 | ehl1eudis.x | . . . 4 ⊢ 𝑋 = (ℝ ↑m {1}) | |
8 | ehl1eudis.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
9 | 5, 6, 7, 8 | ehleudis 24487 | . . 3 ⊢ (1 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
10 | 1, 9 | ax-mp 5 | . 2 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
11 | 7 | eleq2i 2830 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓 ∈ (ℝ ↑m {1})) |
12 | reex 10893 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
13 | snex 5349 | . . . . . . . . . . . . 13 ⊢ {1} ∈ V | |
14 | 12, 13 | elmap 8617 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℝ ↑m {1}) ↔ 𝑓:{1}⟶ℝ) |
15 | 11, 14 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓:{1}⟶ℝ) |
16 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ) | |
17 | 1ex 10902 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ V | |
18 | 17 | snid 4594 | . . . . . . . . . . . . 13 ⊢ 1 ∈ {1} |
19 | 18 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑓:{1}⟶ℝ → 1 ∈ {1}) |
20 | 16, 19 | ffvelrnd 6944 | . . . . . . . . . . 11 ⊢ (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ) |
21 | 15, 20 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝑋 → (𝑓‘1) ∈ ℝ) |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓‘1) ∈ ℝ) |
23 | 7 | eleq2i 2830 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔 ∈ (ℝ ↑m {1})) |
24 | 12, 13 | elmap 8617 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ (ℝ ↑m {1}) ↔ 𝑔:{1}⟶ℝ) |
25 | 23, 24 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔:{1}⟶ℝ) |
26 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ) | |
27 | 18 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑔:{1}⟶ℝ → 1 ∈ {1}) |
28 | 26, 27 | ffvelrnd 6944 | . . . . . . . . . . 11 ⊢ (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ) |
29 | 25, 28 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑋 → (𝑔‘1) ∈ ℝ) |
30 | 29 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑔‘1) ∈ ℝ) |
31 | 22, 30 | resubcld 11333 | . . . . . . . 8 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ) |
32 | 31 | resqcld 13893 | . . . . . . 7 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ) |
33 | 32 | recnd 10934 | . . . . . 6 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) |
34 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑓‘𝑘) = (𝑓‘1)) | |
35 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑔‘𝑘) = (𝑔‘1)) | |
36 | 34, 35 | oveq12d 7273 | . . . . . . . 8 ⊢ (𝑘 = 1 → ((𝑓‘𝑘) − (𝑔‘𝑘)) = ((𝑓‘1) − (𝑔‘1))) |
37 | 36 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑘 = 1 → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2)) |
38 | 37 | sumsn 15386 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2)) |
39 | 2, 33, 38 | sylancr 586 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2)) |
40 | 39 | fveq2d 6760 | . . . 4 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2))) |
41 | 31 | absred 15056 | . . . 4 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2))) |
42 | 40, 41 | eqtr4d 2781 | . . 3 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1)))) |
43 | 42 | mpoeq3ia 7331 | . 2 ⊢ (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) |
44 | 10, 43 | eqtri 2766 | 1 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 ℂcc 10800 ℝcr 10801 1c1 10803 − cmin 11135 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ↑cexp 13710 √csqrt 14872 abscabs 14873 Σcsu 15325 distcds 16897 𝔼hilcehl 24453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-nm 23644 df-tng 23646 df-tcph 24238 df-rrx 24454 df-ehl 24455 |
This theorem is referenced by: ehl1eudisval 24490 |
Copyright terms: Public domain | W3C validator |