MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudis Structured version   Visualization version   GIF version

Theorem ehl1eudis 25342
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑m {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl1eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 12513 . . 3 1 ∈ ℕ0
2 1z 12617 . . . . . 6 1 ∈ ℤ
3 fzsn 13570 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
42, 3ax-mp 5 . . . . 5 (1...1) = {1}
54eqcomi 2737 . . . 4 {1} = (1...1)
6 ehl1eudis.e . . . 4 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . . 4 𝑋 = (ℝ ↑m {1})
8 ehl1eudis.d . . . 4 𝐷 = (dist‘𝐸)
95, 6, 7, 8ehleudis 25340 . . 3 (1 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))))
101, 9ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)))
117eleq2i 2821 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1}))
12 reex 11224 . . . . . . . . . . . . 13 ℝ ∈ V
13 snex 5428 . . . . . . . . . . . . 13 {1} ∈ V
1412, 13elmap 8884 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1}) ↔ 𝑓:{1}⟶ℝ)
1511, 14bitri 275 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1}⟶ℝ)
16 id 22 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ)
17 1ex 11235 . . . . . . . . . . . . . 14 1 ∈ V
1817snid 4661 . . . . . . . . . . . . 13 1 ∈ {1}
1918a1i 11 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 1 ∈ {1})
2016, 19ffvelcdmd 7090 . . . . . . . . . . 11 (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ)
2115, 20sylbi 216 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2221adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
237eleq2i 2821 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1}))
2412, 13elmap 8884 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1}) ↔ 𝑔:{1}⟶ℝ)
2523, 24bitri 275 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1}⟶ℝ)
26 id 22 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ)
2718a1i 11 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 1 ∈ {1})
2826, 27ffvelcdmd 7090 . . . . . . . . . . 11 (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ)
2925, 28sylbi 216 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3029adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3122, 30resubcld 11667 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3231resqcld 14116 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3332recnd 11267 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
34 fveq2 6892 . . . . . . . . 9 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
35 fveq2 6892 . . . . . . . . 9 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
3634, 35oveq12d 7433 . . . . . . . 8 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
3736oveq1d 7430 . . . . . . 7 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
3837sumsn 15719 . . . . . 6 ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
392, 33, 38sylancr 586 . . . . 5 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
4039fveq2d 6896 . . . 4 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4131absred 15390 . . . 4 ((𝑓𝑋𝑔𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4240, 41eqtr4d 2771 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1))))
4342mpoeq3ia 7493 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
4410, 43eqtri 2756 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {csn 4625  wf 6539  cfv 6543  (class class class)co 7415  cmpo 7417  m cmap 8839  cc 11131  cr 11132  1c1 11134  cmin 11469  2c2 12292  0cn0 12497  cz 12583  ...cfz 13511  cexp 14053  csqrt 15207  abscabs 15208  Σcsu 15659  distcds 17236  𝔼hilcehl 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-tpos 8226  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-rp 13002  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-grp 18887  df-minusg 18888  df-sbg 18889  df-subg 19072  df-ghm 19162  df-cntz 19262  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-cring 20170  df-oppr 20267  df-dvdsr 20290  df-unit 20291  df-invr 20321  df-dvr 20334  df-rhm 20405  df-subrng 20477  df-subrg 20502  df-drng 20620  df-field 20621  df-staf 20719  df-srng 20720  df-lmod 20739  df-lss 20810  df-sra 21052  df-rgmod 21053  df-cnfld 21274  df-refld 21531  df-dsmm 21660  df-frlm 21675  df-nm 24485  df-tng 24487  df-tcph 25091  df-rrx 25307  df-ehl 25308
This theorem is referenced by:  ehl1eudisval  25343
  Copyright terms: Public domain W3C validator