MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudis Structured version   Visualization version   GIF version

Theorem ehl1eudis 23726
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑𝑚 {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl1eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11725 . . 3 1 ∈ ℕ0
2 1z 11825 . . . . . 6 1 ∈ ℤ
3 fzsn 12765 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
42, 3ax-mp 5 . . . . 5 (1...1) = {1}
54eqcomi 2788 . . . 4 {1} = (1...1)
6 ehl1eudis.e . . . 4 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . . 4 𝑋 = (ℝ ↑𝑚 {1})
8 ehl1eudis.d . . . 4 𝐷 = (dist‘𝐸)
95, 6, 7, 8ehleudis 23724 . . 3 (1 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))))
101, 9ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)))
117eleq2i 2858 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑𝑚 {1}))
12 reex 10426 . . . . . . . . . . . . 13 ℝ ∈ V
13 snex 5188 . . . . . . . . . . . . 13 {1} ∈ V
1412, 13elmap 8235 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑𝑚 {1}) ↔ 𝑓:{1}⟶ℝ)
1511, 14bitri 267 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1}⟶ℝ)
16 id 22 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ)
17 1ex 10435 . . . . . . . . . . . . . 14 1 ∈ V
1817snid 4473 . . . . . . . . . . . . 13 1 ∈ {1}
1918a1i 11 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 1 ∈ {1})
2016, 19ffvelrnd 6677 . . . . . . . . . . 11 (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ)
2115, 20sylbi 209 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2221adantr 473 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
237eleq2i 2858 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑𝑚 {1}))
2412, 13elmap 8235 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑𝑚 {1}) ↔ 𝑔:{1}⟶ℝ)
2523, 24bitri 267 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1}⟶ℝ)
26 id 22 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ)
2718a1i 11 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 1 ∈ {1})
2826, 27ffvelrnd 6677 . . . . . . . . . . 11 (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ)
2925, 28sylbi 209 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3029adantl 474 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3122, 30resubcld 10869 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3231resqcld 13426 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3332recnd 10468 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
34 fveq2 6499 . . . . . . . . 9 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
35 fveq2 6499 . . . . . . . . 9 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
3634, 35oveq12d 6994 . . . . . . . 8 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
3736oveq1d 6991 . . . . . . 7 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
3837sumsn 14961 . . . . . 6 ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
392, 33, 38sylancr 578 . . . . 5 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
4039fveq2d 6503 . . . 4 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4131absred 14637 . . . 4 ((𝑓𝑋𝑔𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4240, 41eqtr4d 2818 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1))))
4342mpoeq3ia 7050 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
4410, 43eqtri 2803 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1507  wcel 2050  {csn 4441  wf 6184  cfv 6188  (class class class)co 6976  cmpo 6978  𝑚 cmap 8206  cc 10333  cr 10334  1c1 10336  cmin 10670  2c2 11495  0cn0 11707  cz 11793  ...cfz 12708  cexp 13244  csqrt 14453  abscabs 14454  Σcsu 14903  distcds 16430  𝔼hilcehl 23690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-tpos 7695  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-rp 12205  df-fz 12709  df-fzo 12850  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-0g 16571  df-gsum 16572  df-prds 16577  df-pws 16579  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-grp 17894  df-minusg 17895  df-sbg 17896  df-subg 18060  df-ghm 18127  df-cntz 18218  df-cmn 18668  df-abl 18669  df-mgp 18963  df-ur 18975  df-ring 19022  df-cring 19023  df-oppr 19096  df-dvdsr 19114  df-unit 19115  df-invr 19145  df-dvr 19156  df-rnghom 19190  df-drng 19227  df-field 19228  df-subrg 19256  df-staf 19338  df-srng 19339  df-lmod 19358  df-lss 19426  df-sra 19666  df-rgmod 19667  df-cnfld 20248  df-refld 20451  df-dsmm 20578  df-frlm 20593  df-nm 22895  df-tng 22897  df-tcph 23476  df-rrx 23691  df-ehl 23692
This theorem is referenced by:  ehl1eudisval  23727
  Copyright terms: Public domain W3C validator