MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudis Structured version   Visualization version   GIF version

Theorem ehl1eudis 24024
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑m {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl1eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11901 . . 3 1 ∈ ℕ0
2 1z 12000 . . . . . 6 1 ∈ ℤ
3 fzsn 12944 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
42, 3ax-mp 5 . . . . 5 (1...1) = {1}
54eqcomi 2807 . . . 4 {1} = (1...1)
6 ehl1eudis.e . . . 4 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . . 4 𝑋 = (ℝ ↑m {1})
8 ehl1eudis.d . . . 4 𝐷 = (dist‘𝐸)
95, 6, 7, 8ehleudis 24022 . . 3 (1 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))))
101, 9ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)))
117eleq2i 2881 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1}))
12 reex 10617 . . . . . . . . . . . . 13 ℝ ∈ V
13 snex 5297 . . . . . . . . . . . . 13 {1} ∈ V
1412, 13elmap 8418 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1}) ↔ 𝑓:{1}⟶ℝ)
1511, 14bitri 278 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1}⟶ℝ)
16 id 22 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ)
17 1ex 10626 . . . . . . . . . . . . . 14 1 ∈ V
1817snid 4561 . . . . . . . . . . . . 13 1 ∈ {1}
1918a1i 11 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 1 ∈ {1})
2016, 19ffvelrnd 6829 . . . . . . . . . . 11 (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ)
2115, 20sylbi 220 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2221adantr 484 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
237eleq2i 2881 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1}))
2412, 13elmap 8418 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1}) ↔ 𝑔:{1}⟶ℝ)
2523, 24bitri 278 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1}⟶ℝ)
26 id 22 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ)
2718a1i 11 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 1 ∈ {1})
2826, 27ffvelrnd 6829 . . . . . . . . . . 11 (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ)
2925, 28sylbi 220 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3029adantl 485 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3122, 30resubcld 11057 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3231resqcld 13607 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3332recnd 10658 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
34 fveq2 6645 . . . . . . . . 9 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
35 fveq2 6645 . . . . . . . . 9 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
3634, 35oveq12d 7153 . . . . . . . 8 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
3736oveq1d 7150 . . . . . . 7 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
3837sumsn 15093 . . . . . 6 ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
392, 33, 38sylancr 590 . . . . 5 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
4039fveq2d 6649 . . . 4 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4131absred 14768 . . . 4 ((𝑓𝑋𝑔𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4240, 41eqtr4d 2836 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1))))
4342mpoeq3ia 7211 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
4410, 43eqtri 2821 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  {csn 4525  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  cc 10524  cr 10525  1c1 10527  cmin 10859  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  csqrt 14584  abscabs 14585  Σcsu 15034  distcds 16566  𝔼hilcehl 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-nm 23189  df-tng 23191  df-tcph 23774  df-rrx 23989  df-ehl 23990
This theorem is referenced by:  ehl1eudisval  24025
  Copyright terms: Public domain W3C validator