MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldsub Structured version   Visualization version   GIF version

Theorem cnfldsub 19990
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldsub − = (-g‘ℂfld)

Proof of Theorem cnfldsub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 19966 . . . . 5 ℂ = (Base‘ℂfld)
2 cnfldadd 19967 . . . . 5 + = (+g‘ℂfld)
3 eqid 2771 . . . . 5 (invg‘ℂfld) = (invg‘ℂfld)
4 eqid 2771 . . . . 5 (-g‘ℂfld) = (-g‘ℂfld)
51, 2, 3, 4grpsubval 17674 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦)))
6 cnfldneg 19988 . . . . . 6 (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦)
76adantl 467 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦)
87oveq2d 6810 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦))
9 negsub 10532 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
105, 8, 93eqtrrd 2810 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥(-g‘ℂfld)𝑦))
1110mpt2eq3ia 6868 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
12 subf 10486 . . . 4 − :(ℂ × ℂ)⟶ℂ
13 ffn 6186 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
1412, 13ax-mp 5 . . 3 − Fn (ℂ × ℂ)
15 fnov 6916 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
1614, 15mpbi 220 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
17 cnring 19984 . . . . 5 fld ∈ Ring
18 ringgrp 18761 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Grp)
1917, 18ax-mp 5 . . . 4 fld ∈ Grp
201, 4grpsubf 17703 . . . 4 (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ)
21 ffn 6186 . . . 4 ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ))
2219, 20, 21mp2b 10 . . 3 (-g‘ℂfld) Fn (ℂ × ℂ)
23 fnov 6916 . . 3 ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)))
2422, 23mpbi 220 . 2 (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
2511, 16, 243eqtr4i 2803 1 − = (-g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145   × cxp 5248   Fn wfn 6027  wf 6028  cfv 6032  (class class class)co 6794  cmpt2 6796  cc 10137   + caddc 10142  cmin 10469  -cneg 10470  Grpcgrp 17631  invgcminusg 17632  -gcsg 17633  Ringcrg 18756  fldccnfld 19962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-addf 10218  ax-mulf 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-fz 12535  df-struct 16067  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-plusg 16163  df-mulr 16164  df-starv 16165  df-tset 16169  df-ple 16170  df-ds 16173  df-unif 16174  df-0g 16311  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-grp 17634  df-minusg 17635  df-sbg 17636  df-cmn 18403  df-mgp 18699  df-ring 18758  df-cring 18759  df-cnfld 19963
This theorem is referenced by:  zndvds  20114  resubgval  20173  cnngp  22804  cnfldtgp  22893  clmsub  23100  clmsubcl  23106  cnindmet  23182  qqhucn  30377  zringsubgval  42712
  Copyright terms: Public domain W3C validator