MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldsub Structured version   Visualization version   GIF version

Theorem cnfldsub 20391
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldsub − = (-g‘ℂfld)

Proof of Theorem cnfldsub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20367 . . . . 5 ℂ = (Base‘ℂfld)
2 cnfldadd 20368 . . . . 5 + = (+g‘ℂfld)
3 eqid 2737 . . . . 5 (invg‘ℂfld) = (invg‘ℂfld)
4 eqid 2737 . . . . 5 (-g‘ℂfld) = (-g‘ℂfld)
51, 2, 3, 4grpsubval 18413 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦)))
6 cnfldneg 20389 . . . . . 6 (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦)
76adantl 485 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦)
87oveq2d 7229 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦))
9 negsub 11126 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
105, 8, 93eqtrrd 2782 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥(-g‘ℂfld)𝑦))
1110mpoeq3ia 7289 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
12 subf 11080 . . . 4 − :(ℂ × ℂ)⟶ℂ
13 ffn 6545 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
1412, 13ax-mp 5 . . 3 − Fn (ℂ × ℂ)
15 fnov 7341 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
1614, 15mpbi 233 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
17 cnring 20385 . . . . 5 fld ∈ Ring
18 ringgrp 19567 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Grp)
1917, 18ax-mp 5 . . . 4 fld ∈ Grp
201, 4grpsubf 18442 . . . 4 (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ)
21 ffn 6545 . . . 4 ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ))
2219, 20, 21mp2b 10 . . 3 (-g‘ℂfld) Fn (ℂ × ℂ)
23 fnov 7341 . . 3 ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)))
2422, 23mpbi 233 . 2 (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
2511, 16, 243eqtr4i 2775 1 − = (-g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110   × cxp 5549   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  cc 10727   + caddc 10732  cmin 11062  -cneg 11063  Grpcgrp 18365  invgcminusg 18366  -gcsg 18367  Ringcrg 19562  fldccnfld 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-cmn 19172  df-mgp 19505  df-ring 19564  df-cring 19565  df-cnfld 20364
This theorem is referenced by:  zringsubgval  20457  zndvds  20514  resubgval  20571  cnngp  23677  cnfldtgp  23766  clmsub  23977  clmsubcl  23983  cnindmet  24059  qqhucn  31654
  Copyright terms: Public domain W3C validator