| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldsub | Structured version Visualization version GIF version | ||
| Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnfldsub | ⊢ − = (-g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21317 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfldadd 21319 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 4 | eqid 2735 | . . . . 5 ⊢ (-g‘ℂfld) = (-g‘ℂfld) | |
| 5 | 1, 2, 3, 4 | grpsubval 18966 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦))) |
| 6 | cnfldneg 21356 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦) |
| 8 | 7 | oveq2d 7419 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦)) |
| 9 | negsub 11529 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥 − 𝑦)) | |
| 10 | 5, 8, 9 | 3eqtrrd 2775 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (𝑥(-g‘ℂfld)𝑦)) |
| 11 | 10 | mpoeq3ia 7483 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 12 | subf 11482 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 13 | ffn 6705 | . . . 4 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ − Fn (ℂ × ℂ) |
| 15 | fnov 7536 | . . 3 ⊢ ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦))) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) |
| 17 | cnring 21351 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 18 | ringgrp 20196 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 20 | 1, 4 | grpsubf 19000 | . . . 4 ⊢ (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ) |
| 21 | ffn 6705 | . . . 4 ⊢ ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ)) | |
| 22 | 19, 20, 21 | mp2b 10 | . . 3 ⊢ (-g‘ℂfld) Fn (ℂ × ℂ) |
| 23 | fnov 7536 | . . 3 ⊢ ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))) | |
| 24 | 22, 23 | mpbi 230 | . 2 ⊢ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 25 | 11, 16, 24 | 3eqtr4i 2768 | 1 ⊢ − = (-g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5652 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 + caddc 11130 − cmin 11464 -cneg 11465 Grpcgrp 18914 invgcminusg 18915 -gcsg 18916 Ringcrg 20191 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-cmn 19761 df-mgp 20099 df-ring 20193 df-cring 20194 df-cnfld 21314 |
| This theorem is referenced by: zringsub 21414 zringsubgval 21429 zndvds 21508 resubgval 21567 cnngp 24716 cnfldtgp 24809 clmsub 25029 clmsubcl 25035 cnindmet 25112 constrelextdg2 33727 2sqr3minply 33760 qqhucn 33969 |
| Copyright terms: Public domain | W3C validator |