![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldsub | Structured version Visualization version GIF version |
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
cnfldsub | β’ β = (-gββfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20823 | . . . . 5 β’ β = (Baseββfld) | |
2 | cnfldadd 20824 | . . . . 5 β’ + = (+gββfld) | |
3 | eqid 2733 | . . . . 5 β’ (invgββfld) = (invgββfld) | |
4 | eqid 2733 | . . . . 5 β’ (-gββfld) = (-gββfld) | |
5 | 1, 2, 3, 4 | grpsubval 18804 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(-gββfld)π¦) = (π₯ + ((invgββfld)βπ¦))) |
6 | cnfldneg 20846 | . . . . . 6 β’ (π¦ β β β ((invgββfld)βπ¦) = -π¦) | |
7 | 6 | adantl 483 | . . . . 5 β’ ((π₯ β β β§ π¦ β β) β ((invgββfld)βπ¦) = -π¦) |
8 | 7 | oveq2d 7377 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ + ((invgββfld)βπ¦)) = (π₯ + -π¦)) |
9 | negsub 11457 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ + -π¦) = (π₯ β π¦)) | |
10 | 5, 8, 9 | 3eqtrrd 2778 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯ β π¦) = (π₯(-gββfld)π¦)) |
11 | 10 | mpoeq3ia 7439 | . 2 β’ (π₯ β β, π¦ β β β¦ (π₯ β π¦)) = (π₯ β β, π¦ β β β¦ (π₯(-gββfld)π¦)) |
12 | subf 11411 | . . . 4 β’ β :(β Γ β)βΆβ | |
13 | ffn 6672 | . . . 4 β’ ( β :(β Γ β)βΆβ β β Fn (β Γ β)) | |
14 | 12, 13 | ax-mp 5 | . . 3 β’ β Fn (β Γ β) |
15 | fnov 7491 | . . 3 β’ ( β Fn (β Γ β) β β = (π₯ β β, π¦ β β β¦ (π₯ β π¦))) | |
16 | 14, 15 | mpbi 229 | . 2 β’ β = (π₯ β β, π¦ β β β¦ (π₯ β π¦)) |
17 | cnring 20842 | . . . . 5 β’ βfld β Ring | |
18 | ringgrp 19977 | . . . . 5 β’ (βfld β Ring β βfld β Grp) | |
19 | 17, 18 | ax-mp 5 | . . . 4 β’ βfld β Grp |
20 | 1, 4 | grpsubf 18834 | . . . 4 β’ (βfld β Grp β (-gββfld):(β Γ β)βΆβ) |
21 | ffn 6672 | . . . 4 β’ ((-gββfld):(β Γ β)βΆβ β (-gββfld) Fn (β Γ β)) | |
22 | 19, 20, 21 | mp2b 10 | . . 3 β’ (-gββfld) Fn (β Γ β) |
23 | fnov 7491 | . . 3 β’ ((-gββfld) Fn (β Γ β) β (-gββfld) = (π₯ β β, π¦ β β β¦ (π₯(-gββfld)π¦))) | |
24 | 22, 23 | mpbi 229 | . 2 β’ (-gββfld) = (π₯ β β, π¦ β β β¦ (π₯(-gββfld)π¦)) |
25 | 11, 16, 24 | 3eqtr4i 2771 | 1 β’ β = (-gββfld) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 397 = wceq 1542 β wcel 2107 Γ cxp 5635 Fn wfn 6495 βΆwf 6496 βcfv 6500 (class class class)co 7361 β cmpo 7363 βcc 11057 + caddc 11062 β cmin 11393 -cneg 11394 Grpcgrp 18756 invgcminusg 18757 -gcsg 18758 Ringcrg 19972 βfldccnfld 20819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-addf 11138 ax-mulf 11139 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-dec 12627 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-plusg 17154 df-mulr 17155 df-starv 17156 df-tset 17160 df-ple 17161 df-ds 17163 df-unif 17164 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-minusg 18760 df-sbg 18761 df-cmn 19572 df-mgp 19905 df-ring 19974 df-cring 19975 df-cnfld 20820 |
This theorem is referenced by: zringsubgval 20914 zndvds 20979 resubgval 21036 cnngp 24166 cnfldtgp 24255 clmsub 24466 clmsubcl 24472 cnindmet 24549 qqhucn 32637 |
Copyright terms: Public domain | W3C validator |