| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldsub | Structured version Visualization version GIF version | ||
| Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnfldsub | ⊢ − = (-g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21265 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfldadd 21267 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (-g‘ℂfld) = (-g‘ℂfld) | |
| 5 | 1, 2, 3, 4 | grpsubval 18864 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦))) |
| 6 | cnfldneg 21302 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦) |
| 8 | 7 | oveq2d 7365 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦)) |
| 9 | negsub 11412 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥 − 𝑦)) | |
| 10 | 5, 8, 9 | 3eqtrrd 2769 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (𝑥(-g‘ℂfld)𝑦)) |
| 11 | 10 | mpoeq3ia 7427 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 12 | subf 11365 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 13 | ffn 6652 | . . . 4 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ − Fn (ℂ × ℂ) |
| 15 | fnov 7480 | . . 3 ⊢ ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦))) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) |
| 17 | cnring 21297 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 18 | ringgrp 20123 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 20 | 1, 4 | grpsubf 18898 | . . . 4 ⊢ (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ) |
| 21 | ffn 6652 | . . . 4 ⊢ ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ)) | |
| 22 | 19, 20, 21 | mp2b 10 | . . 3 ⊢ (-g‘ℂfld) Fn (ℂ × ℂ) |
| 23 | fnov 7480 | . . 3 ⊢ ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))) | |
| 24 | 22, 23 | mpbi 230 | . 2 ⊢ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 25 | 11, 16, 24 | 3eqtr4i 2762 | 1 ⊢ − = (-g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5617 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℂcc 11007 + caddc 11012 − cmin 11347 -cneg 11348 Grpcgrp 18812 invgcminusg 18813 -gcsg 18814 Ringcrg 20118 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-mgp 20026 df-ring 20120 df-cring 20121 df-cnfld 21262 |
| This theorem is referenced by: zringsub 21362 zringsubgval 21377 zndvds 21456 resubgval 21516 cnngp 24665 cnfldtgp 24758 clmsub 24978 clmsubcl 24984 cnindmet 25060 constrelextdg2 33720 2sqr3minply 33753 qqhucn 33965 |
| Copyright terms: Public domain | W3C validator |