Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfldsub | Structured version Visualization version GIF version |
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
cnfldsub | ⊢ − = (-g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20367 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfldadd 20368 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
3 | eqid 2737 | . . . . 5 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
4 | eqid 2737 | . . . . 5 ⊢ (-g‘ℂfld) = (-g‘ℂfld) | |
5 | 1, 2, 3, 4 | grpsubval 18413 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦))) |
6 | cnfldneg 20389 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦) | |
7 | 6 | adantl 485 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦) |
8 | 7 | oveq2d 7229 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦)) |
9 | negsub 11126 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥 − 𝑦)) | |
10 | 5, 8, 9 | 3eqtrrd 2782 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (𝑥(-g‘ℂfld)𝑦)) |
11 | 10 | mpoeq3ia 7289 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
12 | subf 11080 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
13 | ffn 6545 | . . . 4 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ − Fn (ℂ × ℂ) |
15 | fnov 7341 | . . 3 ⊢ ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦))) | |
16 | 14, 15 | mpbi 233 | . 2 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) |
17 | cnring 20385 | . . . . 5 ⊢ ℂfld ∈ Ring | |
18 | ringgrp 19567 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
20 | 1, 4 | grpsubf 18442 | . . . 4 ⊢ (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ) |
21 | ffn 6545 | . . . 4 ⊢ ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ)) | |
22 | 19, 20, 21 | mp2b 10 | . . 3 ⊢ (-g‘ℂfld) Fn (ℂ × ℂ) |
23 | fnov 7341 | . . 3 ⊢ ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))) | |
24 | 22, 23 | mpbi 233 | . 2 ⊢ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
25 | 11, 16, 24 | 3eqtr4i 2775 | 1 ⊢ − = (-g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 × cxp 5549 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 ℂcc 10727 + caddc 10732 − cmin 11062 -cneg 11063 Grpcgrp 18365 invgcminusg 18366 -gcsg 18367 Ringcrg 19562 ℂfldccnfld 20363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-starv 16817 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-cmn 19172 df-mgp 19505 df-ring 19564 df-cring 19565 df-cnfld 20364 |
This theorem is referenced by: zringsubgval 20457 zndvds 20514 resubgval 20571 cnngp 23677 cnfldtgp 23766 clmsub 23977 clmsubcl 23983 cnindmet 24059 qqhucn 31654 |
Copyright terms: Public domain | W3C validator |