| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldsub | Structured version Visualization version GIF version | ||
| Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnfldsub | ⊢ − = (-g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21300 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfldadd 21302 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (-g‘ℂfld) = (-g‘ℂfld) | |
| 5 | 1, 2, 3, 4 | grpsubval 18899 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦))) |
| 6 | cnfldneg 21337 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦) |
| 8 | 7 | oveq2d 7385 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦)) |
| 9 | negsub 11446 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥 − 𝑦)) | |
| 10 | 5, 8, 9 | 3eqtrrd 2769 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (𝑥(-g‘ℂfld)𝑦)) |
| 11 | 10 | mpoeq3ia 7447 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 12 | subf 11399 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 13 | ffn 6670 | . . . 4 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ − Fn (ℂ × ℂ) |
| 15 | fnov 7500 | . . 3 ⊢ ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦))) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) |
| 17 | cnring 21332 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 18 | ringgrp 20158 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 20 | 1, 4 | grpsubf 18933 | . . . 4 ⊢ (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ) |
| 21 | ffn 6670 | . . . 4 ⊢ ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ)) | |
| 22 | 19, 20, 21 | mp2b 10 | . . 3 ⊢ (-g‘ℂfld) Fn (ℂ × ℂ) |
| 23 | fnov 7500 | . . 3 ⊢ ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))) | |
| 24 | 22, 23 | mpbi 230 | . 2 ⊢ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)) |
| 25 | 11, 16, 24 | 3eqtr4i 2762 | 1 ⊢ − = (-g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 + caddc 11047 − cmin 11381 -cneg 11382 Grpcgrp 18847 invgcminusg 18848 -gcsg 18849 Ringcrg 20153 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-cmn 19696 df-mgp 20061 df-ring 20155 df-cring 20156 df-cnfld 21297 |
| This theorem is referenced by: zringsub 21397 zringsubgval 21412 zndvds 21491 resubgval 21551 cnngp 24700 cnfldtgp 24793 clmsub 25013 clmsubcl 25019 cnindmet 25095 constrelextdg2 33730 2sqr3minply 33763 qqhucn 33975 |
| Copyright terms: Public domain | W3C validator |