MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudis Structured version   Visualization version   GIF version

Theorem ehl2eudis 25322
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl2eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12459 . . 3 2 ∈ ℕ0
2 fz12pr 13542 . . . . 5 (1...2) = {1, 2}
32eqcomi 2738 . . . 4 {1, 2} = (1...2)
4 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
5 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
6 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
73, 4, 5, 6ehleudis 25318 . . 3 (2 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))))
81, 7ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)))
9 fveq2 6858 . . . . . . 7 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
10 fveq2 6858 . . . . . . 7 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
119, 10oveq12d 7405 . . . . . 6 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
1211oveq1d 7402 . . . . 5 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
13 fveq2 6858 . . . . . . 7 (𝑘 = 2 → (𝑓𝑘) = (𝑓‘2))
14 fveq2 6858 . . . . . . 7 (𝑘 = 2 → (𝑔𝑘) = (𝑔‘2))
1513, 14oveq12d 7405 . . . . . 6 (𝑘 = 2 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘2) − (𝑔‘2)))
1615oveq1d 7402 . . . . 5 (𝑘 = 2 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2))
175eleq2i 2820 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1, 2}))
18 reex 11159 . . . . . . . . . . . . 13 ℝ ∈ V
19 prex 5392 . . . . . . . . . . . . 13 {1, 2} ∈ V
2018, 19elmap 8844 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ)
2117, 20bitri 275 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1, 2}⟶ℝ)
22 id 22 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ)
23 1ex 11170 . . . . . . . . . . . . . 14 1 ∈ V
2423prid1 4726 . . . . . . . . . . . . 13 1 ∈ {1, 2}
2524a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2})
2622, 25ffvelcdmd 7057 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ)
2721, 26sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
295eleq2i 2820 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1, 2}))
3018, 19elmap 8844 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ)
3129, 30bitri 275 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1, 2}⟶ℝ)
32 id 22 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ)
3324a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2})
3432, 33ffvelcdmd 7057 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ)
3531, 34sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3635adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3728, 36resubcld 11606 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3837resqcld 14090 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3938recnd 11202 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
40 2ex 12263 . . . . . . . . . . . . . 14 2 ∈ V
4140prid2 4727 . . . . . . . . . . . . 13 2 ∈ {1, 2}
4241a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4322, 42ffvelcdmd 7057 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ)
4421, 43sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘2) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘2) ∈ ℝ)
4641a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4732, 46ffvelcdmd 7057 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ)
4831, 47sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘2) ∈ ℝ)
4948adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘2) ∈ ℝ)
5045, 49resubcld 11606 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ)
5150resqcld 14090 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ)
5251recnd 11202 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)
5339, 52jca 511 . . . . 5 ((𝑓𝑋𝑔𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ))
5423, 40pm3.2i 470 . . . . . 6 (1 ∈ V ∧ 2 ∈ V)
5554a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → (1 ∈ V ∧ 2 ∈ V))
56 1ne2 12389 . . . . . 6 1 ≠ 2
5756a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → 1 ≠ 2)
5812, 16, 53, 55, 57sumpr 15714 . . . 4 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))
5958fveq2d 6862 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
6059mpoeq3ia 7467 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
618, 60eqtri 2752 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  {cpr 4591  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  cc 11066  cr 11067  1c1 11069   + caddc 11071  cmin 11405  2c2 12241  0cn0 12442  ...cfz 13468  cexp 14026  csqrt 15199  Σcsu 15652  distcds 17229  𝔼hilcehl 25284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-refld 21514  df-dsmm 21641  df-frlm 21656  df-nm 24470  df-tng 24472  df-tcph 25069  df-rrx 25285  df-ehl 25286
This theorem is referenced by:  ehl2eudisval  25323
  Copyright terms: Public domain W3C validator