MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudis Structured version   Visualization version   GIF version

Theorem ehl2eudis 25320
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl2eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12401 . . 3 2 ∈ ℕ0
2 fz12pr 13484 . . . . 5 (1...2) = {1, 2}
32eqcomi 2738 . . . 4 {1, 2} = (1...2)
4 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
5 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
6 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
73, 4, 5, 6ehleudis 25316 . . 3 (2 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))))
81, 7ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)))
9 fveq2 6822 . . . . . . 7 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
10 fveq2 6822 . . . . . . 7 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
119, 10oveq12d 7367 . . . . . 6 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
1211oveq1d 7364 . . . . 5 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
13 fveq2 6822 . . . . . . 7 (𝑘 = 2 → (𝑓𝑘) = (𝑓‘2))
14 fveq2 6822 . . . . . . 7 (𝑘 = 2 → (𝑔𝑘) = (𝑔‘2))
1513, 14oveq12d 7367 . . . . . 6 (𝑘 = 2 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘2) − (𝑔‘2)))
1615oveq1d 7364 . . . . 5 (𝑘 = 2 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2))
175eleq2i 2820 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1, 2}))
18 reex 11100 . . . . . . . . . . . . 13 ℝ ∈ V
19 prex 5376 . . . . . . . . . . . . 13 {1, 2} ∈ V
2018, 19elmap 8798 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ)
2117, 20bitri 275 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1, 2}⟶ℝ)
22 id 22 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ)
23 1ex 11111 . . . . . . . . . . . . . 14 1 ∈ V
2423prid1 4714 . . . . . . . . . . . . 13 1 ∈ {1, 2}
2524a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2})
2622, 25ffvelcdmd 7019 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ)
2721, 26sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
295eleq2i 2820 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1, 2}))
3018, 19elmap 8798 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ)
3129, 30bitri 275 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1, 2}⟶ℝ)
32 id 22 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ)
3324a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2})
3432, 33ffvelcdmd 7019 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ)
3531, 34sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3635adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3728, 36resubcld 11548 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3837resqcld 14032 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3938recnd 11143 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
40 2ex 12205 . . . . . . . . . . . . . 14 2 ∈ V
4140prid2 4715 . . . . . . . . . . . . 13 2 ∈ {1, 2}
4241a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4322, 42ffvelcdmd 7019 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ)
4421, 43sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘2) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘2) ∈ ℝ)
4641a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4732, 46ffvelcdmd 7019 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ)
4831, 47sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘2) ∈ ℝ)
4948adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘2) ∈ ℝ)
5045, 49resubcld 11548 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ)
5150resqcld 14032 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ)
5251recnd 11143 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)
5339, 52jca 511 . . . . 5 ((𝑓𝑋𝑔𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ))
5423, 40pm3.2i 470 . . . . . 6 (1 ∈ V ∧ 2 ∈ V)
5554a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → (1 ∈ V ∧ 2 ∈ V))
56 1ne2 12331 . . . . . 6 1 ≠ 2
5756a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → 1 ≠ 2)
5812, 16, 53, 55, 57sumpr 15655 . . . 4 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))
5958fveq2d 6826 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
6059mpoeq3ia 7427 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
618, 60eqtri 2752 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {cpr 4579  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753  cc 11007  cr 11008  1c1 11010   + caddc 11012  cmin 11347  2c2 12183  0cn0 12384  ...cfz 13410  cexp 13968  csqrt 15140  Σcsu 15593  distcds 17170  𝔼hilcehl 25282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-staf 20724  df-srng 20725  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-refld 21512  df-dsmm 21639  df-frlm 21654  df-nm 24468  df-tng 24470  df-tcph 25067  df-rrx 25283  df-ehl 25284
This theorem is referenced by:  ehl2eudisval  25321
  Copyright terms: Public domain W3C validator