MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudis Structured version   Visualization version   GIF version

Theorem ehl2eudis 25475
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl2eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12570 . . 3 2 ∈ ℕ0
2 fz12pr 13641 . . . . 5 (1...2) = {1, 2}
32eqcomi 2749 . . . 4 {1, 2} = (1...2)
4 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
5 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
6 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
73, 4, 5, 6ehleudis 25471 . . 3 (2 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))))
81, 7ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)))
9 fveq2 6920 . . . . . . 7 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
10 fveq2 6920 . . . . . . 7 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
119, 10oveq12d 7466 . . . . . 6 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
1211oveq1d 7463 . . . . 5 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
13 fveq2 6920 . . . . . . 7 (𝑘 = 2 → (𝑓𝑘) = (𝑓‘2))
14 fveq2 6920 . . . . . . 7 (𝑘 = 2 → (𝑔𝑘) = (𝑔‘2))
1513, 14oveq12d 7466 . . . . . 6 (𝑘 = 2 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘2) − (𝑔‘2)))
1615oveq1d 7463 . . . . 5 (𝑘 = 2 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2))
175eleq2i 2836 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1, 2}))
18 reex 11275 . . . . . . . . . . . . 13 ℝ ∈ V
19 prex 5452 . . . . . . . . . . . . 13 {1, 2} ∈ V
2018, 19elmap 8929 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ)
2117, 20bitri 275 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1, 2}⟶ℝ)
22 id 22 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ)
23 1ex 11286 . . . . . . . . . . . . . 14 1 ∈ V
2423prid1 4787 . . . . . . . . . . . . 13 1 ∈ {1, 2}
2524a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2})
2622, 25ffvelcdmd 7119 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ)
2721, 26sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
295eleq2i 2836 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1, 2}))
3018, 19elmap 8929 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ)
3129, 30bitri 275 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1, 2}⟶ℝ)
32 id 22 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ)
3324a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2})
3432, 33ffvelcdmd 7119 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ)
3531, 34sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3635adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3728, 36resubcld 11718 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3837resqcld 14175 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3938recnd 11318 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
40 2ex 12370 . . . . . . . . . . . . . 14 2 ∈ V
4140prid2 4788 . . . . . . . . . . . . 13 2 ∈ {1, 2}
4241a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4322, 42ffvelcdmd 7119 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ)
4421, 43sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘2) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘2) ∈ ℝ)
4641a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4732, 46ffvelcdmd 7119 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ)
4831, 47sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘2) ∈ ℝ)
4948adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘2) ∈ ℝ)
5045, 49resubcld 11718 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ)
5150resqcld 14175 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ)
5251recnd 11318 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)
5339, 52jca 511 . . . . 5 ((𝑓𝑋𝑔𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ))
5423, 40pm3.2i 470 . . . . . 6 (1 ∈ V ∧ 2 ∈ V)
5554a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → (1 ∈ V ∧ 2 ∈ V))
56 1ne2 12501 . . . . . 6 1 ≠ 2
5756a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → 1 ≠ 2)
5812, 16, 53, 55, 57sumpr 15796 . . . 4 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))
5958fveq2d 6924 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
6059mpoeq3ia 7528 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
618, 60eqtri 2768 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  {cpr 4650  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  cc 11182  cr 11183  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  0cn0 12553  ...cfz 13567  cexp 14112  csqrt 15282  Σcsu 15734  distcds 17320  𝔼hilcehl 25437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438  df-ehl 25439
This theorem is referenced by:  ehl2eudisval  25476
  Copyright terms: Public domain W3C validator