Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ehl2eudis | Structured version Visualization version GIF version |
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
ehl2eudis.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudis.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehl2eudis | ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12351 | . . 3 ⊢ 2 ∈ ℕ0 | |
2 | fz12pr 13414 | . . . . 5 ⊢ (1...2) = {1, 2} | |
3 | 2 | eqcomi 2745 | . . . 4 ⊢ {1, 2} = (1...2) |
4 | ehl2eudis.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
5 | ehl2eudis.x | . . . 4 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
6 | ehl2eudis.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
7 | 3, 4, 5, 6 | ehleudis 24688 | . . 3 ⊢ (2 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
9 | fveq2 6825 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑓‘𝑘) = (𝑓‘1)) | |
10 | fveq2 6825 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑔‘𝑘) = (𝑔‘1)) | |
11 | 9, 10 | oveq12d 7355 | . . . . . 6 ⊢ (𝑘 = 1 → ((𝑓‘𝑘) − (𝑔‘𝑘)) = ((𝑓‘1) − (𝑔‘1))) |
12 | 11 | oveq1d 7352 | . . . . 5 ⊢ (𝑘 = 1 → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2)) |
13 | fveq2 6825 | . . . . . . 7 ⊢ (𝑘 = 2 → (𝑓‘𝑘) = (𝑓‘2)) | |
14 | fveq2 6825 | . . . . . . 7 ⊢ (𝑘 = 2 → (𝑔‘𝑘) = (𝑔‘2)) | |
15 | 13, 14 | oveq12d 7355 | . . . . . 6 ⊢ (𝑘 = 2 → ((𝑓‘𝑘) − (𝑔‘𝑘)) = ((𝑓‘2) − (𝑔‘2))) |
16 | 15 | oveq1d 7352 | . . . . 5 ⊢ (𝑘 = 2 → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2)) |
17 | 5 | eleq2i 2828 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓 ∈ (ℝ ↑m {1, 2})) |
18 | reex 11063 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
19 | prex 5377 | . . . . . . . . . . . . 13 ⊢ {1, 2} ∈ V | |
20 | 18, 19 | elmap 8730 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ) |
21 | 17, 20 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓:{1, 2}⟶ℝ) |
22 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ) | |
23 | 1ex 11072 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ V | |
24 | 23 | prid1 4710 | . . . . . . . . . . . . 13 ⊢ 1 ∈ {1, 2} |
25 | 24 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2}) |
26 | 22, 25 | ffvelcdmd 7018 | . . . . . . . . . . 11 ⊢ (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ) |
27 | 21, 26 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝑋 → (𝑓‘1) ∈ ℝ) |
28 | 27 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓‘1) ∈ ℝ) |
29 | 5 | eleq2i 2828 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔 ∈ (ℝ ↑m {1, 2})) |
30 | 18, 19 | elmap 8730 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ) |
31 | 29, 30 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔:{1, 2}⟶ℝ) |
32 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ) | |
33 | 24 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2}) |
34 | 32, 33 | ffvelcdmd 7018 | . . . . . . . . . . 11 ⊢ (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ) |
35 | 31, 34 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑋 → (𝑔‘1) ∈ ℝ) |
36 | 35 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑔‘1) ∈ ℝ) |
37 | 28, 36 | resubcld 11504 | . . . . . . . 8 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ) |
38 | 37 | resqcld 14066 | . . . . . . 7 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ) |
39 | 38 | recnd 11104 | . . . . . 6 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) |
40 | 2ex 12151 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ V | |
41 | 40 | prid2 4711 | . . . . . . . . . . . . 13 ⊢ 2 ∈ {1, 2} |
42 | 41 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2}) |
43 | 22, 42 | ffvelcdmd 7018 | . . . . . . . . . . 11 ⊢ (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ) |
44 | 21, 43 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝑋 → (𝑓‘2) ∈ ℝ) |
45 | 44 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓‘2) ∈ ℝ) |
46 | 41 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2}) |
47 | 32, 46 | ffvelcdmd 7018 | . . . . . . . . . . 11 ⊢ (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ) |
48 | 31, 47 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑋 → (𝑔‘2) ∈ ℝ) |
49 | 48 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑔‘2) ∈ ℝ) |
50 | 45, 49 | resubcld 11504 | . . . . . . . 8 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ) |
51 | 50 | resqcld 14066 | . . . . . . 7 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ) |
52 | 51 | recnd 11104 | . . . . . 6 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ) |
53 | 39, 52 | jca 512 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)) |
54 | 23, 40 | pm3.2i 471 | . . . . . 6 ⊢ (1 ∈ V ∧ 2 ∈ V) |
55 | 54 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (1 ∈ V ∧ 2 ∈ V)) |
56 | 1ne2 12282 | . . . . . 6 ⊢ 1 ≠ 2 | |
57 | 56 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → 1 ≠ 2) |
58 | 12, 16, 53, 55, 57 | sumpr 15559 | . . . 4 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) |
59 | 58 | fveq2d 6829 | . . 3 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
60 | 59 | mpoeq3ia 7415 | . 2 ⊢ (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
61 | 8, 60 | eqtri 2764 | 1 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 {cpr 4575 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ↑m cmap 8686 ℂcc 10970 ℝcr 10971 1c1 10973 + caddc 10975 − cmin 11306 2c2 12129 ℕ0cn0 12334 ...cfz 13340 ↑cexp 13883 √csqrt 15043 Σcsu 15496 distcds 17068 𝔼hilcehl 24654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-0g 17249 df-gsum 17250 df-prds 17255 df-pws 17257 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-ghm 18928 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-rnghom 20054 df-drng 20095 df-field 20096 df-subrg 20127 df-staf 20211 df-srng 20212 df-lmod 20231 df-lss 20300 df-sra 20540 df-rgmod 20541 df-cnfld 20704 df-refld 20916 df-dsmm 21045 df-frlm 21060 df-nm 23844 df-tng 23846 df-tcph 24439 df-rrx 24655 df-ehl 24656 |
This theorem is referenced by: ehl2eudisval 24693 |
Copyright terms: Public domain | W3C validator |