Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudis Structured version   Visualization version   GIF version

Theorem ehl2eudis 24024
 Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl2eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11902 . . 3 2 ∈ ℕ0
2 fz12pr 12959 . . . . 5 (1...2) = {1, 2}
32eqcomi 2831 . . . 4 {1, 2} = (1...2)
4 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
5 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
6 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
73, 4, 5, 6ehleudis 24020 . . 3 (2 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))))
81, 7ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)))
9 fveq2 6652 . . . . . . 7 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
10 fveq2 6652 . . . . . . 7 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
119, 10oveq12d 7158 . . . . . 6 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
1211oveq1d 7155 . . . . 5 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
13 fveq2 6652 . . . . . . 7 (𝑘 = 2 → (𝑓𝑘) = (𝑓‘2))
14 fveq2 6652 . . . . . . 7 (𝑘 = 2 → (𝑔𝑘) = (𝑔‘2))
1513, 14oveq12d 7158 . . . . . 6 (𝑘 = 2 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘2) − (𝑔‘2)))
1615oveq1d 7155 . . . . 5 (𝑘 = 2 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2))
175eleq2i 2905 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1, 2}))
18 reex 10617 . . . . . . . . . . . . 13 ℝ ∈ V
19 prex 5310 . . . . . . . . . . . . 13 {1, 2} ∈ V
2018, 19elmap 8422 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ)
2117, 20bitri 278 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1, 2}⟶ℝ)
22 id 22 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ)
23 1ex 10626 . . . . . . . . . . . . . 14 1 ∈ V
2423prid1 4672 . . . . . . . . . . . . 13 1 ∈ {1, 2}
2524a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2})
2622, 25ffvelrnd 6834 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ)
2721, 26sylbi 220 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2827adantr 484 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
295eleq2i 2905 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1, 2}))
3018, 19elmap 8422 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ)
3129, 30bitri 278 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1, 2}⟶ℝ)
32 id 22 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ)
3324a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2})
3432, 33ffvelrnd 6834 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ)
3531, 34sylbi 220 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3635adantl 485 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3728, 36resubcld 11057 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3837resqcld 13607 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3938recnd 10658 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
40 2ex 11702 . . . . . . . . . . . . . 14 2 ∈ V
4140prid2 4673 . . . . . . . . . . . . 13 2 ∈ {1, 2}
4241a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4322, 42ffvelrnd 6834 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ)
4421, 43sylbi 220 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘2) ∈ ℝ)
4544adantr 484 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘2) ∈ ℝ)
4641a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4732, 46ffvelrnd 6834 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ)
4831, 47sylbi 220 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘2) ∈ ℝ)
4948adantl 485 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘2) ∈ ℝ)
5045, 49resubcld 11057 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ)
5150resqcld 13607 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ)
5251recnd 10658 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)
5339, 52jca 515 . . . . 5 ((𝑓𝑋𝑔𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ))
5423, 40pm3.2i 474 . . . . . 6 (1 ∈ V ∧ 2 ∈ V)
5554a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → (1 ∈ V ∧ 2 ∈ V))
56 1ne2 11833 . . . . . 6 1 ≠ 2
5756a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → 1 ≠ 2)
5812, 16, 53, 55, 57sumpr 15094 . . . 4 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))
5958fveq2d 6656 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
6059mpoeq3ia 7216 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
618, 60eqtri 2845 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  Vcvv 3469  {cpr 4541  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142   ↑m cmap 8393  ℂcc 10524  ℝcr 10525  1c1 10527   + caddc 10529   − cmin 10859  2c2 11680  ℕ0cn0 11885  ...cfz 12885  ↑cexp 13425  √csqrt 14583  Σcsu 15033  distcds 16565  𝔼hilcehl 23986 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-0g 16706  df-gsum 16707  df-prds 16712  df-pws 16714  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-ghm 18347  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19495  df-field 19496  df-subrg 19524  df-staf 19607  df-srng 19608  df-lmod 19627  df-lss 19695  df-sra 19935  df-rgmod 19936  df-cnfld 20090  df-refld 20292  df-dsmm 20419  df-frlm 20434  df-nm 23187  df-tng 23189  df-tcph 23772  df-rrx 23987  df-ehl 23988 This theorem is referenced by:  ehl2eudisval  24025
 Copyright terms: Public domain W3C validator