MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudis Structured version   Visualization version   GIF version

Theorem ehl2eudis 25374
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl2eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12518 . . 3 2 ∈ ℕ0
2 fz12pr 13598 . . . . 5 (1...2) = {1, 2}
32eqcomi 2744 . . . 4 {1, 2} = (1...2)
4 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
5 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
6 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
73, 4, 5, 6ehleudis 25370 . . 3 (2 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))))
81, 7ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)))
9 fveq2 6876 . . . . . . 7 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
10 fveq2 6876 . . . . . . 7 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
119, 10oveq12d 7423 . . . . . 6 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
1211oveq1d 7420 . . . . 5 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
13 fveq2 6876 . . . . . . 7 (𝑘 = 2 → (𝑓𝑘) = (𝑓‘2))
14 fveq2 6876 . . . . . . 7 (𝑘 = 2 → (𝑔𝑘) = (𝑔‘2))
1513, 14oveq12d 7423 . . . . . 6 (𝑘 = 2 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘2) − (𝑔‘2)))
1615oveq1d 7420 . . . . 5 (𝑘 = 2 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2))
175eleq2i 2826 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1, 2}))
18 reex 11220 . . . . . . . . . . . . 13 ℝ ∈ V
19 prex 5407 . . . . . . . . . . . . 13 {1, 2} ∈ V
2018, 19elmap 8885 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ)
2117, 20bitri 275 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1, 2}⟶ℝ)
22 id 22 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ)
23 1ex 11231 . . . . . . . . . . . . . 14 1 ∈ V
2423prid1 4738 . . . . . . . . . . . . 13 1 ∈ {1, 2}
2524a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2})
2622, 25ffvelcdmd 7075 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ)
2721, 26sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
295eleq2i 2826 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1, 2}))
3018, 19elmap 8885 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ)
3129, 30bitri 275 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1, 2}⟶ℝ)
32 id 22 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ)
3324a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2})
3432, 33ffvelcdmd 7075 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ)
3531, 34sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3635adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3728, 36resubcld 11665 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3837resqcld 14143 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3938recnd 11263 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
40 2ex 12317 . . . . . . . . . . . . . 14 2 ∈ V
4140prid2 4739 . . . . . . . . . . . . 13 2 ∈ {1, 2}
4241a1i 11 . . . . . . . . . . . 12 (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4322, 42ffvelcdmd 7075 . . . . . . . . . . 11 (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ)
4421, 43sylbi 217 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘2) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘2) ∈ ℝ)
4641a1i 11 . . . . . . . . . . . 12 (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2})
4732, 46ffvelcdmd 7075 . . . . . . . . . . 11 (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ)
4831, 47sylbi 217 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘2) ∈ ℝ)
4948adantl 481 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘2) ∈ ℝ)
5045, 49resubcld 11665 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ)
5150resqcld 14143 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ)
5251recnd 11263 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)
5339, 52jca 511 . . . . 5 ((𝑓𝑋𝑔𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ))
5423, 40pm3.2i 470 . . . . . 6 (1 ∈ V ∧ 2 ∈ V)
5554a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → (1 ∈ V ∧ 2 ∈ V))
56 1ne2 12448 . . . . . 6 1 ≠ 2
5756a1i 11 . . . . 5 ((𝑓𝑋𝑔𝑋) → 1 ≠ 2)
5812, 16, 53, 55, 57sumpr 15764 . . . 4 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))
5958fveq2d 6880 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
6059mpoeq3ia 7485 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
618, 60eqtri 2758 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  {cpr 4603  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  cc 11127  cr 11128  1c1 11130   + caddc 11132  cmin 11466  2c2 12295  0cn0 12501  ...cfz 13524  cexp 14079  csqrt 15252  Σcsu 15702  distcds 17280  𝔼hilcehl 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-nm 24521  df-tng 24523  df-tcph 25121  df-rrx 25337  df-ehl 25338
This theorem is referenced by:  ehl2eudisval  25375
  Copyright terms: Public domain W3C validator