![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehl2eudis | Structured version Visualization version GIF version |
Description: The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
ehl2eudis.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudis.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehl2eudis | ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12570 | . . 3 ⊢ 2 ∈ ℕ0 | |
2 | fz12pr 13641 | . . . . 5 ⊢ (1...2) = {1, 2} | |
3 | 2 | eqcomi 2749 | . . . 4 ⊢ {1, 2} = (1...2) |
4 | ehl2eudis.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
5 | ehl2eudis.x | . . . 4 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
6 | ehl2eudis.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
7 | 3, 4, 5, 6 | ehleudis 25471 | . . 3 ⊢ (2 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
9 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑓‘𝑘) = (𝑓‘1)) | |
10 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑔‘𝑘) = (𝑔‘1)) | |
11 | 9, 10 | oveq12d 7466 | . . . . . 6 ⊢ (𝑘 = 1 → ((𝑓‘𝑘) − (𝑔‘𝑘)) = ((𝑓‘1) − (𝑔‘1))) |
12 | 11 | oveq1d 7463 | . . . . 5 ⊢ (𝑘 = 1 → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2)) |
13 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 2 → (𝑓‘𝑘) = (𝑓‘2)) | |
14 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 2 → (𝑔‘𝑘) = (𝑔‘2)) | |
15 | 13, 14 | oveq12d 7466 | . . . . . 6 ⊢ (𝑘 = 2 → ((𝑓‘𝑘) − (𝑔‘𝑘)) = ((𝑓‘2) − (𝑔‘2))) |
16 | 15 | oveq1d 7463 | . . . . 5 ⊢ (𝑘 = 2 → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (((𝑓‘2) − (𝑔‘2))↑2)) |
17 | 5 | eleq2i 2836 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓 ∈ (ℝ ↑m {1, 2})) |
18 | reex 11275 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
19 | prex 5452 | . . . . . . . . . . . . 13 ⊢ {1, 2} ∈ V | |
20 | 18, 19 | elmap 8929 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℝ ↑m {1, 2}) ↔ 𝑓:{1, 2}⟶ℝ) |
21 | 17, 20 | bitri 275 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝑋 ↔ 𝑓:{1, 2}⟶ℝ) |
22 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 𝑓:{1, 2}⟶ℝ) | |
23 | 1ex 11286 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ V | |
24 | 23 | prid1 4787 | . . . . . . . . . . . . 13 ⊢ 1 ∈ {1, 2} |
25 | 24 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 1 ∈ {1, 2}) |
26 | 22, 25 | ffvelcdmd 7119 | . . . . . . . . . . 11 ⊢ (𝑓:{1, 2}⟶ℝ → (𝑓‘1) ∈ ℝ) |
27 | 21, 26 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝑋 → (𝑓‘1) ∈ ℝ) |
28 | 27 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓‘1) ∈ ℝ) |
29 | 5 | eleq2i 2836 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔 ∈ (ℝ ↑m {1, 2})) |
30 | 18, 19 | elmap 8929 | . . . . . . . . . . . 12 ⊢ (𝑔 ∈ (ℝ ↑m {1, 2}) ↔ 𝑔:{1, 2}⟶ℝ) |
31 | 29, 30 | bitri 275 | . . . . . . . . . . 11 ⊢ (𝑔 ∈ 𝑋 ↔ 𝑔:{1, 2}⟶ℝ) |
32 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 𝑔:{1, 2}⟶ℝ) | |
33 | 24 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 1 ∈ {1, 2}) |
34 | 32, 33 | ffvelcdmd 7119 | . . . . . . . . . . 11 ⊢ (𝑔:{1, 2}⟶ℝ → (𝑔‘1) ∈ ℝ) |
35 | 31, 34 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑋 → (𝑔‘1) ∈ ℝ) |
36 | 35 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑔‘1) ∈ ℝ) |
37 | 28, 36 | resubcld 11718 | . . . . . . . 8 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ) |
38 | 37 | resqcld 14175 | . . . . . . 7 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ) |
39 | 38 | recnd 11318 | . . . . . 6 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) |
40 | 2ex 12370 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ V | |
41 | 40 | prid2 4788 | . . . . . . . . . . . . 13 ⊢ 2 ∈ {1, 2} |
42 | 41 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑓:{1, 2}⟶ℝ → 2 ∈ {1, 2}) |
43 | 22, 42 | ffvelcdmd 7119 | . . . . . . . . . . 11 ⊢ (𝑓:{1, 2}⟶ℝ → (𝑓‘2) ∈ ℝ) |
44 | 21, 43 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝑋 → (𝑓‘2) ∈ ℝ) |
45 | 44 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑓‘2) ∈ ℝ) |
46 | 41 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑔:{1, 2}⟶ℝ → 2 ∈ {1, 2}) |
47 | 32, 46 | ffvelcdmd 7119 | . . . . . . . . . . 11 ⊢ (𝑔:{1, 2}⟶ℝ → (𝑔‘2) ∈ ℝ) |
48 | 31, 47 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑋 → (𝑔‘2) ∈ ℝ) |
49 | 48 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑔‘2) ∈ ℝ) |
50 | 45, 49 | resubcld 11718 | . . . . . . . 8 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑓‘2) − (𝑔‘2)) ∈ ℝ) |
51 | 50 | resqcld 14175 | . . . . . . 7 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℝ) |
52 | 51 | recnd 11318 | . . . . . 6 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ) |
53 | 39, 52 | jca 511 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ ∧ (((𝑓‘2) − (𝑔‘2))↑2) ∈ ℂ)) |
54 | 23, 40 | pm3.2i 470 | . . . . . 6 ⊢ (1 ∈ V ∧ 2 ∈ V) |
55 | 54 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (1 ∈ V ∧ 2 ∈ V)) |
56 | 1ne2 12501 | . . . . . 6 ⊢ 1 ≠ 2 | |
57 | 56 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → 1 ≠ 2) |
58 | 12, 16, 53, 55, 57 | sumpr 15796 | . . . 4 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) |
59 | 58 | fveq2d 6924 | . . 3 ⊢ ((𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
60 | 59 | mpoeq3ia 7528 | . 2 ⊢ (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ {1, 2} (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
61 | 8, 60 | eqtri 2768 | 1 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {cpr 4650 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 ℂcc 11182 ℝcr 11183 1c1 11185 + caddc 11187 − cmin 11520 2c2 12348 ℕ0cn0 12553 ...cfz 13567 ↑cexp 14112 √csqrt 15282 Σcsu 15734 distcds 17320 𝔼hilcehl 25437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-refld 21646 df-dsmm 21775 df-frlm 21790 df-nm 24616 df-tng 24618 df-tcph 25222 df-rrx 25438 df-ehl 25439 |
This theorem is referenced by: ehl2eudisval 25476 |
Copyright terms: Public domain | W3C validator |