Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpluscn Structured version   Visualization version   GIF version

Theorem mndpluscn 33872
Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.)
Hypotheses
Ref Expression
mndpluscn.f 𝐹 ∈ (𝐽Homeo𝐾)
mndpluscn.p + :(𝐵 × 𝐵)⟶𝐵
mndpluscn.t :(𝐶 × 𝐶)⟶𝐶
mndpluscn.j 𝐽 ∈ (TopOn‘𝐵)
mndpluscn.k 𝐾 ∈ (TopOn‘𝐶)
mndpluscn.h ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mndpluscn.o + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Assertion
Ref Expression
mndpluscn ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Distinct variable groups:   𝑦, ,𝑥   𝑦, +   𝑦,𝐹   𝑥, +   𝑥,𝐵,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mndpluscn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpluscn.t . . . 4 :(𝐶 × 𝐶)⟶𝐶
2 ffn 6747 . . . 4 ( :(𝐶 × 𝐶)⟶𝐶 Fn (𝐶 × 𝐶))
3 fnov 7581 . . . . 5 ( Fn (𝐶 × 𝐶) ↔ = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
43biimpi 216 . . . 4 ( Fn (𝐶 × 𝐶) → = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
51, 2, 4mp2b 10 . . 3 = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏))
6 mndpluscn.f . . . . . . . . 9 𝐹 ∈ (𝐽Homeo𝐾)
7 mndpluscn.j . . . . . . . . . . 11 𝐽 ∈ (TopOn‘𝐵)
87toponunii 22943 . . . . . . . . . 10 𝐵 = 𝐽
9 mndpluscn.k . . . . . . . . . . 11 𝐾 ∈ (TopOn‘𝐶)
109toponunii 22943 . . . . . . . . . 10 𝐶 = 𝐾
118, 10hmeof1o 23793 . . . . . . . . 9 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝐵1-1-onto𝐶)
126, 11ax-mp 5 . . . . . . . 8 𝐹:𝐵1-1-onto𝐶
13 f1ocnvdm 7321 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹𝑎) ∈ 𝐵)
1412, 13mpan 689 . . . . . . 7 (𝑎𝐶 → (𝐹𝑎) ∈ 𝐵)
15 f1ocnvdm 7321 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹𝑏) ∈ 𝐵)
1612, 15mpan 689 . . . . . . 7 (𝑏𝐶 → (𝐹𝑏) ∈ 𝐵)
1714, 16anim12i 612 . . . . . 6 ((𝑎𝐶𝑏𝐶) → ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵))
18 mndpluscn.h . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918rgen2 3205 . . . . . 6 𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))
20 fvoveq1 7471 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘((𝐹𝑎) + 𝑦)))
21 fveq2 6920 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝐹𝑥) = (𝐹‘(𝐹𝑎)))
2221oveq1d 7463 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)))
2320, 22eqeq12d 2756 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦))))
24 oveq2 7456 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) + 𝑦) = ((𝐹𝑎) + (𝐹𝑏)))
2524fveq2d 6924 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (𝐹‘((𝐹𝑎) + 𝑦)) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
26 fveq2 6920 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (𝐹𝑦) = (𝐹‘(𝐹𝑏)))
2726oveq2d 7464 . . . . . . . 8 (𝑦 = (𝐹𝑏) → ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
2825, 27eqeq12d 2756 . . . . . . 7 (𝑦 = (𝐹𝑏) → ((𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏)))))
2923, 28rspc2va 3647 . . . . . 6 ((((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
3017, 19, 29sylancl 585 . . . . 5 ((𝑎𝐶𝑏𝐶) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
31 f1ocnvfv2 7313 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹‘(𝐹𝑎)) = 𝑎)
3212, 31mpan 689 . . . . . 6 (𝑎𝐶 → (𝐹‘(𝐹𝑎)) = 𝑎)
33 f1ocnvfv2 7313 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹‘(𝐹𝑏)) = 𝑏)
3412, 33mpan 689 . . . . . 6 (𝑏𝐶 → (𝐹‘(𝐹𝑏)) = 𝑏)
3532, 34oveqan12d 7467 . . . . 5 ((𝑎𝐶𝑏𝐶) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
3630, 35eqtr2d 2781 . . . 4 ((𝑎𝐶𝑏𝐶) → (𝑎 𝑏) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
3736mpoeq3ia 7528 . . 3 (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)) = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
385, 37eqtri 2768 . 2 = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
399a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐶))
4039, 39cnmpt1st 23697 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑎) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
41 hmeocnvcn 23790 . . . . . . 7 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
426, 41mp1i 13 . . . . . 6 (⊤ → 𝐹 ∈ (𝐾 Cn 𝐽))
4339, 39, 40, 42cnmpt21f 23701 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑎)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
4439, 39cnmpt2nd 23698 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑏) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4539, 39, 44, 42cnmpt21f 23701 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑏)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
46 mndpluscn.o . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4746a1i 11 . . . . 5 (⊤ → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4839, 39, 43, 45, 47cnmpt22f 23704 . . . 4 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ ((𝐹𝑎) + (𝐹𝑏))) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
49 hmeocn 23789 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
506, 49mp1i 13 . . . 4 (⊤ → 𝐹 ∈ (𝐽 Cn 𝐾))
5139, 39, 48, 50cnmpt21f 23701 . . 3 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
5251mptru 1544 . 2 (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5338, 52eqeltri 2840 1 ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wtru 1538  wcel 2108  wral 3067   × cxp 5698  ccnv 5699   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591  df-hmeo 23784
This theorem is referenced by:  mhmhmeotmd  33873  xrge0pluscn  33886
  Copyright terms: Public domain W3C validator