Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpluscn Structured version   Visualization version   GIF version

Theorem mndpluscn 31876
Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.)
Hypotheses
Ref Expression
mndpluscn.f 𝐹 ∈ (𝐽Homeo𝐾)
mndpluscn.p + :(𝐵 × 𝐵)⟶𝐵
mndpluscn.t :(𝐶 × 𝐶)⟶𝐶
mndpluscn.j 𝐽 ∈ (TopOn‘𝐵)
mndpluscn.k 𝐾 ∈ (TopOn‘𝐶)
mndpluscn.h ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mndpluscn.o + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Assertion
Ref Expression
mndpluscn ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Distinct variable groups:   𝑦, ,𝑥   𝑦, +   𝑦,𝐹   𝑥, +   𝑥,𝐵,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mndpluscn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpluscn.t . . . 4 :(𝐶 × 𝐶)⟶𝐶
2 ffn 6600 . . . 4 ( :(𝐶 × 𝐶)⟶𝐶 Fn (𝐶 × 𝐶))
3 fnov 7405 . . . . 5 ( Fn (𝐶 × 𝐶) ↔ = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
43biimpi 215 . . . 4 ( Fn (𝐶 × 𝐶) → = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
51, 2, 4mp2b 10 . . 3 = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏))
6 mndpluscn.f . . . . . . . . 9 𝐹 ∈ (𝐽Homeo𝐾)
7 mndpluscn.j . . . . . . . . . . 11 𝐽 ∈ (TopOn‘𝐵)
87toponunii 22065 . . . . . . . . . 10 𝐵 = 𝐽
9 mndpluscn.k . . . . . . . . . . 11 𝐾 ∈ (TopOn‘𝐶)
109toponunii 22065 . . . . . . . . . 10 𝐶 = 𝐾
118, 10hmeof1o 22915 . . . . . . . . 9 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝐵1-1-onto𝐶)
126, 11ax-mp 5 . . . . . . . 8 𝐹:𝐵1-1-onto𝐶
13 f1ocnvdm 7157 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹𝑎) ∈ 𝐵)
1412, 13mpan 687 . . . . . . 7 (𝑎𝐶 → (𝐹𝑎) ∈ 𝐵)
15 f1ocnvdm 7157 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹𝑏) ∈ 𝐵)
1612, 15mpan 687 . . . . . . 7 (𝑏𝐶 → (𝐹𝑏) ∈ 𝐵)
1714, 16anim12i 613 . . . . . 6 ((𝑎𝐶𝑏𝐶) → ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵))
18 mndpluscn.h . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918rgen2 3120 . . . . . 6 𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))
20 fvoveq1 7298 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘((𝐹𝑎) + 𝑦)))
21 fveq2 6774 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝐹𝑥) = (𝐹‘(𝐹𝑎)))
2221oveq1d 7290 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)))
2320, 22eqeq12d 2754 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦))))
24 oveq2 7283 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) + 𝑦) = ((𝐹𝑎) + (𝐹𝑏)))
2524fveq2d 6778 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (𝐹‘((𝐹𝑎) + 𝑦)) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
26 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (𝐹𝑦) = (𝐹‘(𝐹𝑏)))
2726oveq2d 7291 . . . . . . . 8 (𝑦 = (𝐹𝑏) → ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
2825, 27eqeq12d 2754 . . . . . . 7 (𝑦 = (𝐹𝑏) → ((𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏)))))
2923, 28rspc2va 3571 . . . . . 6 ((((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
3017, 19, 29sylancl 586 . . . . 5 ((𝑎𝐶𝑏𝐶) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
31 f1ocnvfv2 7149 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹‘(𝐹𝑎)) = 𝑎)
3212, 31mpan 687 . . . . . 6 (𝑎𝐶 → (𝐹‘(𝐹𝑎)) = 𝑎)
33 f1ocnvfv2 7149 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹‘(𝐹𝑏)) = 𝑏)
3412, 33mpan 687 . . . . . 6 (𝑏𝐶 → (𝐹‘(𝐹𝑏)) = 𝑏)
3532, 34oveqan12d 7294 . . . . 5 ((𝑎𝐶𝑏𝐶) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
3630, 35eqtr2d 2779 . . . 4 ((𝑎𝐶𝑏𝐶) → (𝑎 𝑏) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
3736mpoeq3ia 7353 . . 3 (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)) = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
385, 37eqtri 2766 . 2 = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
399a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐶))
4039, 39cnmpt1st 22819 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑎) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
41 hmeocnvcn 22912 . . . . . . 7 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
426, 41mp1i 13 . . . . . 6 (⊤ → 𝐹 ∈ (𝐾 Cn 𝐽))
4339, 39, 40, 42cnmpt21f 22823 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑎)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
4439, 39cnmpt2nd 22820 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑏) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4539, 39, 44, 42cnmpt21f 22823 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑏)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
46 mndpluscn.o . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4746a1i 11 . . . . 5 (⊤ → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4839, 39, 43, 45, 47cnmpt22f 22826 . . . 4 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ ((𝐹𝑎) + (𝐹𝑏))) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
49 hmeocn 22911 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
506, 49mp1i 13 . . . 4 (⊤ → 𝐹 ∈ (𝐽 Cn 𝐾))
5139, 39, 48, 50cnmpt21f 22823 . . 3 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
5251mptru 1546 . 2 (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5338, 52eqeltri 2835 1 ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wtru 1540  wcel 2106  wral 3064   × cxp 5587  ccnv 5588   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  Homeochmeo 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-tx 22713  df-hmeo 22906
This theorem is referenced by:  mhmhmeotmd  31877  xrge0pluscn  31890
  Copyright terms: Public domain W3C validator