Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpluscn Structured version   Visualization version   GIF version

Theorem mndpluscn 33957
Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.)
Hypotheses
Ref Expression
mndpluscn.f 𝐹 ∈ (𝐽Homeo𝐾)
mndpluscn.p + :(𝐵 × 𝐵)⟶𝐵
mndpluscn.t :(𝐶 × 𝐶)⟶𝐶
mndpluscn.j 𝐽 ∈ (TopOn‘𝐵)
mndpluscn.k 𝐾 ∈ (TopOn‘𝐶)
mndpluscn.h ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mndpluscn.o + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Assertion
Ref Expression
mndpluscn ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Distinct variable groups:   𝑦, ,𝑥   𝑦, +   𝑦,𝐹   𝑥, +   𝑥,𝐵,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mndpluscn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpluscn.t . . . 4 :(𝐶 × 𝐶)⟶𝐶
2 ffn 6706 . . . 4 ( :(𝐶 × 𝐶)⟶𝐶 Fn (𝐶 × 𝐶))
3 fnov 7538 . . . . 5 ( Fn (𝐶 × 𝐶) ↔ = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
43biimpi 216 . . . 4 ( Fn (𝐶 × 𝐶) → = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
51, 2, 4mp2b 10 . . 3 = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏))
6 mndpluscn.f . . . . . . . . 9 𝐹 ∈ (𝐽Homeo𝐾)
7 mndpluscn.j . . . . . . . . . . 11 𝐽 ∈ (TopOn‘𝐵)
87toponunii 22854 . . . . . . . . . 10 𝐵 = 𝐽
9 mndpluscn.k . . . . . . . . . . 11 𝐾 ∈ (TopOn‘𝐶)
109toponunii 22854 . . . . . . . . . 10 𝐶 = 𝐾
118, 10hmeof1o 23702 . . . . . . . . 9 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝐵1-1-onto𝐶)
126, 11ax-mp 5 . . . . . . . 8 𝐹:𝐵1-1-onto𝐶
13 f1ocnvdm 7278 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹𝑎) ∈ 𝐵)
1412, 13mpan 690 . . . . . . 7 (𝑎𝐶 → (𝐹𝑎) ∈ 𝐵)
15 f1ocnvdm 7278 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹𝑏) ∈ 𝐵)
1612, 15mpan 690 . . . . . . 7 (𝑏𝐶 → (𝐹𝑏) ∈ 𝐵)
1714, 16anim12i 613 . . . . . 6 ((𝑎𝐶𝑏𝐶) → ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵))
18 mndpluscn.h . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918rgen2 3184 . . . . . 6 𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))
20 fvoveq1 7428 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘((𝐹𝑎) + 𝑦)))
21 fveq2 6876 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝐹𝑥) = (𝐹‘(𝐹𝑎)))
2221oveq1d 7420 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)))
2320, 22eqeq12d 2751 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦))))
24 oveq2 7413 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) + 𝑦) = ((𝐹𝑎) + (𝐹𝑏)))
2524fveq2d 6880 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (𝐹‘((𝐹𝑎) + 𝑦)) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
26 fveq2 6876 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (𝐹𝑦) = (𝐹‘(𝐹𝑏)))
2726oveq2d 7421 . . . . . . . 8 (𝑦 = (𝐹𝑏) → ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
2825, 27eqeq12d 2751 . . . . . . 7 (𝑦 = (𝐹𝑏) → ((𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏)))))
2923, 28rspc2va 3613 . . . . . 6 ((((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
3017, 19, 29sylancl 586 . . . . 5 ((𝑎𝐶𝑏𝐶) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
31 f1ocnvfv2 7270 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹‘(𝐹𝑎)) = 𝑎)
3212, 31mpan 690 . . . . . 6 (𝑎𝐶 → (𝐹‘(𝐹𝑎)) = 𝑎)
33 f1ocnvfv2 7270 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹‘(𝐹𝑏)) = 𝑏)
3412, 33mpan 690 . . . . . 6 (𝑏𝐶 → (𝐹‘(𝐹𝑏)) = 𝑏)
3532, 34oveqan12d 7424 . . . . 5 ((𝑎𝐶𝑏𝐶) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
3630, 35eqtr2d 2771 . . . 4 ((𝑎𝐶𝑏𝐶) → (𝑎 𝑏) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
3736mpoeq3ia 7485 . . 3 (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)) = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
385, 37eqtri 2758 . 2 = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
399a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐶))
4039, 39cnmpt1st 23606 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑎) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
41 hmeocnvcn 23699 . . . . . . 7 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
426, 41mp1i 13 . . . . . 6 (⊤ → 𝐹 ∈ (𝐾 Cn 𝐽))
4339, 39, 40, 42cnmpt21f 23610 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑎)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
4439, 39cnmpt2nd 23607 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑏) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4539, 39, 44, 42cnmpt21f 23610 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑏)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
46 mndpluscn.o . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4746a1i 11 . . . . 5 (⊤ → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4839, 39, 43, 45, 47cnmpt22f 23613 . . . 4 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ ((𝐹𝑎) + (𝐹𝑏))) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
49 hmeocn 23698 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
506, 49mp1i 13 . . . 4 (⊤ → 𝐹 ∈ (𝐽 Cn 𝐾))
5139, 39, 48, 50cnmpt21f 23610 . . 3 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
5251mptru 1547 . 2 (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5338, 52eqeltri 2830 1 ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3051   × cxp 5652  ccnv 5653   Fn wfn 6526  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  TopOnctopon 22848   Cn ccn 23162   ×t ctx 23498  Homeochmeo 23691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-tx 23500  df-hmeo 23693
This theorem is referenced by:  mhmhmeotmd  33958  xrge0pluscn  33971
  Copyright terms: Public domain W3C validator