MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg10a Structured version   Visualization version   GIF version

Theorem itg10a 24310
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg10a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
Assertion
Ref Expression
itg10a (𝜑 → (∫1𝐹) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg10a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . 3 (𝜑𝐹 ∈ dom ∫1)
2 itg1val 24283 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
31, 2syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
4 i1ff 24276 . . . . . . . . . . . . . . . 16 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
51, 4syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
65ffnd 6514 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn ℝ)
76adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
8 fniniseg 6829 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
97, 8syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
10 eldifsni 4721 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
1110ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ≠ 0)
12 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
13 eldif 3945 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
14 simplrr 776 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 𝑘)
15 itg10a.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1615ad4ant14 750 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1714, 16eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0)
1817ex 415 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0))
1913, 18syl5bir 245 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → 𝑘 = 0))
2012, 19mpand 693 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴𝑘 = 0))
2120necon1ad 3033 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥𝐴))
2211, 21mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥𝐴)
2322ex 415 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
249, 23sylbid 242 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
2524ssrdv 3972 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ 𝐴)
26 itg10a.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
2726adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ)
2825, 27sstrd 3976 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
29 itg10a.3 . . . . . . . . . . 11 (𝜑 → (vol*‘𝐴) = 0)
3029adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0)
31 ovolssnul 24087 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
3225, 27, 30, 31syl3anc 1367 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(𝐹 “ {𝑘})) = 0)
33 nulmbl 24135 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) = 0) → (𝐹 “ {𝑘}) ∈ dom vol)
3428, 32, 33syl2anc 586 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
35 mblvol 24130 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3634, 35syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3736, 32eqtrd 2856 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = 0)
3837oveq2d 7171 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
395frnd 6520 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
4039ssdifssd 4118 . . . . . . . 8 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
4140sselda 3966 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
4241recnd 10668 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
4342mul01d 10838 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0)
4438, 43eqtrd 2856 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
4544sumeq2dv 15059 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0)
46 i1frn 24277 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
471, 46syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
48 difss 4107 . . . . . 6 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
49 ssfi 8737 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
5047, 48, 49sylancl 588 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
5150olcd 870 . . . 4 (𝜑 → ((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin))
52 sumz 15078 . . . 4 (((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5351, 52syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5445, 53eqtrd 2856 . 2 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
553, 54eqtrd 2856 1 (𝜑 → (∫1𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  cdif 3932  wss 3935  {csn 4566  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  Fincfn 8508  cr 10535  0cc0 10536   · cmul 10541  cuz 12242  Σcsu 15041  vol*covol 24062  volcvol 24063  1citg1 24215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-ovol 24064  df-vol 24065  df-itg1 24220
This theorem is referenced by:  itg2addnclem  34942
  Copyright terms: Public domain W3C validator