MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg10a Structured version   Visualization version   GIF version

Theorem itg10a 24780
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg10a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
Assertion
Ref Expression
itg10a (𝜑 → (∫1𝐹) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg10a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . 3 (𝜑𝐹 ∈ dom ∫1)
2 itg1val 24752 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
31, 2syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
4 i1ff 24745 . . . . . . . . . . . . . . . 16 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
51, 4syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
65ffnd 6585 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn ℝ)
76adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
8 fniniseg 6919 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
97, 8syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
10 eldifsni 4720 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
1110ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ≠ 0)
12 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
13 eldif 3893 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
14 simplrr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 𝑘)
15 itg10a.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1615ad4ant14 748 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1714, 16eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0)
1817ex 412 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0))
1913, 18syl5bir 242 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → 𝑘 = 0))
2012, 19mpand 691 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴𝑘 = 0))
2120necon1ad 2959 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥𝐴))
2211, 21mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥𝐴)
2322ex 412 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
249, 23sylbid 239 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
2524ssrdv 3923 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ 𝐴)
26 itg10a.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ)
2825, 27sstrd 3927 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
29 itg10a.3 . . . . . . . . . . 11 (𝜑 → (vol*‘𝐴) = 0)
3029adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0)
31 ovolssnul 24556 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
3225, 27, 30, 31syl3anc 1369 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(𝐹 “ {𝑘})) = 0)
33 nulmbl 24604 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) = 0) → (𝐹 “ {𝑘}) ∈ dom vol)
3428, 32, 33syl2anc 583 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
35 mblvol 24599 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3634, 35syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3736, 32eqtrd 2778 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = 0)
3837oveq2d 7271 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
395frnd 6592 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
4039ssdifssd 4073 . . . . . . . 8 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
4140sselda 3917 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
4241recnd 10934 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
4342mul01d 11104 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0)
4438, 43eqtrd 2778 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
4544sumeq2dv 15343 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0)
46 i1frn 24746 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
471, 46syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
48 difss 4062 . . . . . 6 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
49 ssfi 8918 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
5047, 48, 49sylancl 585 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
5150olcd 870 . . . 4 (𝜑 → ((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin))
52 sumz 15362 . . . 4 (((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5351, 52syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5445, 53eqtrd 2778 . 2 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
553, 54eqtrd 2778 1 (𝜑 → (∫1𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  {csn 4558  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802   · cmul 10807  cuz 12511  Σcsu 15325  vol*covol 24531  volcvol 24532  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ovol 24533  df-vol 24534  df-itg1 24689
This theorem is referenced by:  itg2addnclem  35755
  Copyright terms: Public domain W3C validator