MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg10a Structured version   Visualization version   GIF version

Theorem itg10a 24886
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg10a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
Assertion
Ref Expression
itg10a (𝜑 → (∫1𝐹) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg10a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . 3 (𝜑𝐹 ∈ dom ∫1)
2 itg1val 24858 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
31, 2syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
4 i1ff 24851 . . . . . . . . . . . . . . . 16 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
51, 4syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
65ffnd 6599 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn ℝ)
76adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
8 fniniseg 6934 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
97, 8syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
10 eldifsni 4729 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
1110ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ≠ 0)
12 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
13 eldif 3902 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
14 simplrr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 𝑘)
15 itg10a.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1615ad4ant14 749 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1714, 16eqtr3d 2782 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0)
1817ex 413 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0))
1913, 18syl5bir 242 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → 𝑘 = 0))
2012, 19mpand 692 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴𝑘 = 0))
2120necon1ad 2962 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥𝐴))
2211, 21mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥𝐴)
2322ex 413 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
249, 23sylbid 239 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
2524ssrdv 3932 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ 𝐴)
26 itg10a.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
2726adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ)
2825, 27sstrd 3936 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
29 itg10a.3 . . . . . . . . . . 11 (𝜑 → (vol*‘𝐴) = 0)
3029adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0)
31 ovolssnul 24662 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
3225, 27, 30, 31syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(𝐹 “ {𝑘})) = 0)
33 nulmbl 24710 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) = 0) → (𝐹 “ {𝑘}) ∈ dom vol)
3428, 32, 33syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
35 mblvol 24705 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3634, 35syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3736, 32eqtrd 2780 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = 0)
3837oveq2d 7288 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
395frnd 6606 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
4039ssdifssd 4082 . . . . . . . 8 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
4140sselda 3926 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
4241recnd 11014 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
4342mul01d 11185 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0)
4438, 43eqtrd 2780 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
4544sumeq2dv 15426 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0)
46 i1frn 24852 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
471, 46syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
48 difss 4071 . . . . . 6 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
49 ssfi 8947 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
5047, 48, 49sylancl 586 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
5150olcd 871 . . . 4 (𝜑 → ((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin))
52 sumz 15445 . . . 4 (((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5351, 52syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5445, 53eqtrd 2780 . 2 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
553, 54eqtrd 2780 1 (𝜑 → (∫1𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  cdif 3889  wss 3892  {csn 4567  ccnv 5589  dom cdm 5590  ran crn 5591  cima 5593   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7272  Fincfn 8725  cr 10881  0cc0 10882   · cmul 10887  cuz 12593  Σcsu 15408  vol*covol 24637  volcvol 24638  1citg1 24790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-q 12700  df-rp 12742  df-ioo 13094  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-clim 15208  df-sum 15409  df-ovol 24639  df-vol 24640  df-itg1 24795
This theorem is referenced by:  itg2addnclem  35837
  Copyright terms: Public domain W3C validator