MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg10a Structured version   Visualization version   GIF version

Theorem itg10a 25746
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg10a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
Assertion
Ref Expression
itg10a (𝜑 → (∫1𝐹) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg10a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . 3 (𝜑𝐹 ∈ dom ∫1)
2 itg1val 25719 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
31, 2syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
4 i1ff 25712 . . . . . . . . . . . . . . . 16 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
51, 4syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
65ffnd 6736 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn ℝ)
76adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
8 fniniseg 7079 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
97, 8syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
10 eldifsni 4789 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
1110ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ≠ 0)
12 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
13 eldif 3960 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
14 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 𝑘)
15 itg10a.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1615ad4ant14 752 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1714, 16eqtr3d 2778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0)
1817ex 412 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0))
1913, 18biimtrrid 243 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → 𝑘 = 0))
2012, 19mpand 695 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴𝑘 = 0))
2120necon1ad 2956 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥𝐴))
2211, 21mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥𝐴)
2322ex 412 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
249, 23sylbid 240 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
2524ssrdv 3988 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ 𝐴)
26 itg10a.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ)
2825, 27sstrd 3993 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
29 itg10a.3 . . . . . . . . . . 11 (𝜑 → (vol*‘𝐴) = 0)
3029adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0)
31 ovolssnul 25523 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
3225, 27, 30, 31syl3anc 1372 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(𝐹 “ {𝑘})) = 0)
33 nulmbl 25571 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) = 0) → (𝐹 “ {𝑘}) ∈ dom vol)
3428, 32, 33syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
35 mblvol 25566 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3634, 35syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3736, 32eqtrd 2776 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = 0)
3837oveq2d 7448 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
395frnd 6743 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
4039ssdifssd 4146 . . . . . . . 8 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
4140sselda 3982 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
4241recnd 11290 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
4342mul01d 11461 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0)
4438, 43eqtrd 2776 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
4544sumeq2dv 15739 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0)
46 i1frn 25713 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
471, 46syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
48 difss 4135 . . . . . 6 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
49 ssfi 9214 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
5047, 48, 49sylancl 586 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
5150olcd 874 . . . 4 (𝜑 → ((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin))
52 sumz 15759 . . . 4 (((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5351, 52syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5445, 53eqtrd 2776 . 2 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
553, 54eqtrd 2776 1 (𝜑 → (∫1𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  cdif 3947  wss 3950  {csn 4625  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  Fincfn 8986  cr 11155  0cc0 11156   · cmul 11161  cuz 12879  Σcsu 15723  vol*covol 25498  volcvol 25499  1citg1 25651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-ovol 25500  df-vol 25501  df-itg1 25656
This theorem is referenced by:  itg2addnclem  37679
  Copyright terms: Public domain W3C validator