Step | Hyp | Ref
| Expression |
1 | | elply 25261 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
2 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
3 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑆 ⊆ ℂ) |
4 | | cnex 10883 |
. . . . . . . . . . . . . . . 16
⊢ ℂ
∈ V |
5 | | ssexg 5242 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
6 | 3, 4, 5 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑆 ∈ V) |
7 | | snex 5349 |
. . . . . . . . . . . . . . 15
⊢ {0}
∈ V |
8 | | unexg 7577 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
9 | 6, 7, 8 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑆 ∪ {0}) ∈ V) |
10 | | nn0ex 12169 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
11 | | elmapg 8586 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
12 | 9, 10, 11 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
13 | 2, 12 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0})) |
14 | 13 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑥 ∈ ℕ0) → (𝑓‘𝑥) ∈ (𝑆 ∪ {0})) |
15 | | ssun2 4103 |
. . . . . . . . . . . 12
⊢ {0}
⊆ (𝑆 ∪
{0}) |
16 | | c0ex 10900 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
17 | 16 | snss 4716 |
. . . . . . . . . . . 12
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
18 | 15, 17 | mpbir 230 |
. . . . . . . . . . 11
⊢ 0 ∈
(𝑆 ∪
{0}) |
19 | | ifcl 4501 |
. . . . . . . . . . 11
⊢ (((𝑓‘𝑥) ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) ∈ (𝑆 ∪ {0})) |
20 | 14, 18, 19 | sylancl 585 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) ∈ (𝑆 ∪ {0})) |
21 | 20 | fmpttd 6971 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})) |
22 | | elmapg 8586 |
. . . . . . . . . 10
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
23 | 9, 10, 22 | sylancl 585 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
24 | 21, 23 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
25 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛))) |
26 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑓‘𝑥) = (𝑓‘𝑘)) |
27 | 25, 26 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
28 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) |
29 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑘) ∈ V |
30 | 29, 16 | ifex 4506 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) ∈ V |
31 | 27, 28, 30 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
32 | 31 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
33 | | iffalse 4465 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) = 0) |
34 | 33 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 ∈ (0...𝑛) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = 0)) |
35 | 32, 34 | syl5ibcom 244 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (¬
𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = 0)) |
36 | 35 | necon1ad 2959 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑛))) |
37 | | elfzle2 13189 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ≤ 𝑛) |
38 | 36, 37 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
39 | 38 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
40 | 39 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
41 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑛 ∈ ℕ0) |
42 | | 0cnd 10899 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 0 ∈ ℂ) |
43 | 42 | snssd 4739 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → {0} ⊆ ℂ) |
44 | 3, 43 | unssd 4116 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑆 ∪ {0}) ⊆
ℂ) |
45 | 21, 44 | fssd 6602 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥),
0)):ℕ0⟶ℂ) |
46 | | plyco0 25258 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶ℂ)
→ (((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛))) |
47 | 41, 45, 46 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛))) |
48 | 40, 47 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0}) |
49 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
50 | | imaeq1 5953 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1)))) |
51 | 50 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0})) |
52 | | fveq1 6755 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎‘𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘)) |
53 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
54 | 53, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
55 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) = (𝑓‘𝑘)) |
56 | 54, 55 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = (𝑓‘𝑘)) |
57 | 52, 56 | sylan9eq 2799 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) = (𝑓‘𝑘)) |
58 | 57 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝑓‘𝑘) · (𝑧↑𝑘))) |
59 | 58 | sumeq2dv 15343 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) |
60 | 59 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
61 | 60 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
62 | 51, 61 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))))) |
63 | 62 | rspcev 3552 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
64 | 24, 48, 49, 63 | syl12anc 833 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
65 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
66 | 65 | anbi2d 628 |
. . . . . . . 8
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
67 | 66 | rexbidv 3225 |
. . . . . . 7
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
68 | 64, 67 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
69 | 68 | rexlimdva 3212 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
→ (∃𝑓 ∈
((𝑆 ∪ {0})
↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
70 | 69 | reximdva 3202 |
. . . 4
⊢ (𝑆 ⊆ ℂ →
(∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
71 | 70 | imdistani 568 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
72 | 1, 71 | sylbi 216 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
73 | | simpr 484 |
. . . . . 6
⊢ (((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
74 | 73 | reximi 3174 |
. . . . 5
⊢
(∃𝑎 ∈
((𝑆 ∪ {0})
↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
75 | 74 | reximi 3174 |
. . . 4
⊢
(∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
76 | 75 | anim2i 616 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
77 | | elply 25261 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
78 | 76, 77 | sylibr 233 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → 𝐹 ∈ (Poly‘𝑆)) |
79 | 72, 78 | impbii 208 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |