MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elply2 Structured version   Visualization version   GIF version

Theorem elply2 25262
Description: The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Distinct variable groups:   𝑘,𝑎,𝑛,𝑧,𝑆   𝐹,𝑎,𝑛
Allowed substitution hints:   𝐹(𝑧,𝑘)

Proof of Theorem elply2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25261 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
2 simpr 484 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0))
3 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑆 ⊆ ℂ)
4 cnex 10883 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5 ssexg 5242 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
63, 4, 5sylancl 585 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑆 ∈ V)
7 snex 5349 . . . . . . . . . . . . . . 15 {0} ∈ V
8 unexg 7577 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
96, 7, 8sylancl 585 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑆 ∪ {0}) ∈ V)
10 nn0ex 12169 . . . . . . . . . . . . . 14 0 ∈ V
11 elmapg 8586 . . . . . . . . . . . . . 14 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
129, 10, 11sylancl 585 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
132, 12mpbid 231 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0}))
1413ffvelrnda 6943 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑥 ∈ ℕ0) → (𝑓𝑥) ∈ (𝑆 ∪ {0}))
15 ssun2 4103 . . . . . . . . . . . 12 {0} ⊆ (𝑆 ∪ {0})
16 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
1716snss 4716 . . . . . . . . . . . 12 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1815, 17mpbir 230 . . . . . . . . . . 11 0 ∈ (𝑆 ∪ {0})
19 ifcl 4501 . . . . . . . . . . 11 (((𝑓𝑥) ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2014, 18, 19sylancl 585 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2120fmpttd 6971 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))
22 elmapg 8586 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
239, 10, 22sylancl 585 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
2421, 23mpbird 256 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0))
25 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛)))
26 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
2725, 26ifbieq1d 4480 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
28 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))
29 fvex 6769 . . . . . . . . . . . . . . . . 17 (𝑓𝑘) ∈ V
3029, 16ifex 4506 . . . . . . . . . . . . . . . 16 if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ∈ V
3127, 28, 30fvmpt 6857 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
3231ad2antll 725 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
33 iffalse 4465 . . . . . . . . . . . . . . 15 𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = 0)
3433eqeq2d 2749 . . . . . . . . . . . . . 14 𝑘 ∈ (0...𝑛) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3532, 34syl5ibcom 244 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (¬ 𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3635necon1ad 2959 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑛)))
37 elfzle2 13189 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘𝑛)
3836, 37syl6 35 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
3938anassrs 467 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑘 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
4039ralrimiva 3107 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
41 simplr 765 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑛 ∈ ℕ0)
42 0cnd 10899 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 0 ∈ ℂ)
4342snssd 4739 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → {0} ⊆ ℂ)
443, 43unssd 4116 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑆 ∪ {0}) ⊆ ℂ)
4521, 44fssd 6602 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ)
46 plyco0 25258 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4741, 45, 46syl2anc 583 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4840, 47mpbird 256 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0})
49 eqidd 2739 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
50 imaeq1 5953 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎 “ (ℤ‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))))
5150eqeq1d 2740 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0}))
52 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘))
53 elfznn0 13278 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
5453, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
55 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = (𝑓𝑘))
5654, 55eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = (𝑓𝑘))
5752, 56sylan9eq 2799 . . . . . . . . . . . . . 14 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) = (𝑓𝑘))
5857oveq1d 7270 . . . . . . . . . . . . 13 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑓𝑘) · (𝑧𝑘)))
5958sumeq2dv 15343 . . . . . . . . . . . 12 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))
6059mpteq2dv 5172 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
6160eqeq2d 2749 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
6251, 61anbi12d 630 . . . . . . . . 9 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))))
6362rspcev 3552 . . . . . . . 8 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6424, 48, 49, 63syl12anc 833 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65 eqeq1 2742 . . . . . . . . 9 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6665anbi2d 628 . . . . . . . 8 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6766rexbidv 3225 . . . . . . 7 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6864, 67syl5ibrcom 246 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6968rexlimdva 3212 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7069reximdva 3202 . . . 4 (𝑆 ⊆ ℂ → (∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7170imdistani 568 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
721, 71sylbi 216 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
73 simpr 484 . . . . . 6 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7473reximi 3174 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7574reximi 3174 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7675anim2i 616 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
77 elply 25261 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
7876, 77sylibr 233 . 2 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 ∈ (Poly‘𝑆))
7972, 78impbii 208 1 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  0cn0 12163  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  Polycply 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-sum 15326  df-ply 25254
This theorem is referenced by:  plyadd  25283  plymul  25284  coeeu  25291  dgrlem  25295  coeid  25304
  Copyright terms: Public domain W3C validator