MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elply2 Structured version   Visualization version   GIF version

Theorem elply2 25044
Description: The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Distinct variable groups:   𝑘,𝑎,𝑛,𝑧,𝑆   𝐹,𝑎,𝑛
Allowed substitution hints:   𝐹(𝑧,𝑘)

Proof of Theorem elply2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25043 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
2 simpr 488 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0))
3 simpll 767 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑆 ⊆ ℂ)
4 cnex 10775 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5 ssexg 5201 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
63, 4, 5sylancl 589 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑆 ∈ V)
7 snex 5309 . . . . . . . . . . . . . . 15 {0} ∈ V
8 unexg 7512 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
96, 7, 8sylancl 589 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑆 ∪ {0}) ∈ V)
10 nn0ex 12061 . . . . . . . . . . . . . 14 0 ∈ V
11 elmapg 8499 . . . . . . . . . . . . . 14 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
129, 10, 11sylancl 589 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
132, 12mpbid 235 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0}))
1413ffvelrnda 6882 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑥 ∈ ℕ0) → (𝑓𝑥) ∈ (𝑆 ∪ {0}))
15 ssun2 4073 . . . . . . . . . . . 12 {0} ⊆ (𝑆 ∪ {0})
16 c0ex 10792 . . . . . . . . . . . . 13 0 ∈ V
1716snss 4685 . . . . . . . . . . . 12 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1815, 17mpbir 234 . . . . . . . . . . 11 0 ∈ (𝑆 ∪ {0})
19 ifcl 4470 . . . . . . . . . . 11 (((𝑓𝑥) ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2014, 18, 19sylancl 589 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2120fmpttd 6910 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))
22 elmapg 8499 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
239, 10, 22sylancl 589 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
2421, 23mpbird 260 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0))
25 eleq1w 2813 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛)))
26 fveq2 6695 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
2725, 26ifbieq1d 4449 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
28 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))
29 fvex 6708 . . . . . . . . . . . . . . . . 17 (𝑓𝑘) ∈ V
3029, 16ifex 4475 . . . . . . . . . . . . . . . 16 if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ∈ V
3127, 28, 30fvmpt 6796 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
3231ad2antll 729 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
33 iffalse 4434 . . . . . . . . . . . . . . 15 𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = 0)
3433eqeq2d 2747 . . . . . . . . . . . . . 14 𝑘 ∈ (0...𝑛) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3532, 34syl5ibcom 248 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (¬ 𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = 0))
3635necon1ad 2949 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑛)))
37 elfzle2 13081 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑛) → 𝑘𝑛)
3836, 37syl6 35 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
3938anassrs 471 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) ∧ 𝑘 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
4039ralrimiva 3095 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛))
41 simplr 769 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 𝑛 ∈ ℕ0)
42 0cnd 10791 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → 0 ∈ ℂ)
4342snssd 4708 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → {0} ⊆ ℂ)
443, 43unssd 4086 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑆 ∪ {0}) ⊆ ℂ)
4521, 44fssd 6541 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ)
46 plyco0 25040 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶ℂ) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4741, 45, 46syl2anc 587 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) ≠ 0 → 𝑘𝑛)))
4840, 47mpbird 260 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0})
49 eqidd 2737 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
50 imaeq1 5909 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎 “ (ℤ‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))))
5150eqeq1d 2738 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0}))
52 fveq1 6694 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘))
53 elfznn0 13170 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
5453, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
55 iftrue 4431 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = (𝑓𝑘))
5654, 55eqtrd 2771 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = (𝑓𝑘))
5752, 56sylan9eq 2791 . . . . . . . . . . . . . 14 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) = (𝑓𝑘))
5857oveq1d 7206 . . . . . . . . . . . . 13 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑓𝑘) · (𝑧𝑘)))
5958sumeq2dv 15232 . . . . . . . . . . . 12 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))
6059mpteq2dv 5136 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
6160eqeq2d 2747 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
6251, 61anbi12d 634 . . . . . . . . 9 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))))
6362rspcev 3527 . . . . . . . 8 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6424, 48, 49, 63syl12anc 837 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65 eqeq1 2740 . . . . . . . . 9 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
6665anbi2d 632 . . . . . . . 8 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6766rexbidv 3206 . . . . . . 7 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6864, 67syl5ibrcom 250 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
6968rexlimdva 3193 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7069reximdva 3183 . . . 4 (𝑆 ⊆ ℂ → (∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7170imdistani 572 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
721, 71sylbi 220 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
73 simpr 488 . . . . . 6 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7473reximi 3156 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7574reximi 3156 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
7675anim2i 620 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
77 elply 25043 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
7876, 77sylibr 237 . 2 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 ∈ (Poly‘𝑆))
7972, 78impbii 212 1 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cun 3851  wss 3853  ifcif 4425  {csn 4527   class class class wbr 5039  cmpt 5120  cima 5539  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486  cc 10692  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  cle 10833  0cn0 12055  cuz 12403  ...cfz 13060  cexp 13600  Σcsu 15214  Polycply 25032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-sum 15215  df-ply 25036
This theorem is referenced by:  plyadd  25065  plymul  25066  coeeu  25073  dgrlem  25077  coeid  25086
  Copyright terms: Public domain W3C validator