| Step | Hyp | Ref
| Expression |
| 1 | | elply 26157 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
| 2 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
| 3 | | simpll 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑆 ⊆ ℂ) |
| 4 | | cnex 11215 |
. . . . . . . . . . . . . . . 16
⊢ ℂ
∈ V |
| 5 | | ssexg 5298 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
| 6 | 3, 4, 5 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑆 ∈ V) |
| 7 | | snex 5411 |
. . . . . . . . . . . . . . 15
⊢ {0}
∈ V |
| 8 | | unexg 7742 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
| 9 | 6, 7, 8 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑆 ∪ {0}) ∈ V) |
| 10 | | nn0ex 12512 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
| 11 | | elmapg 8858 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
| 12 | 9, 10, 11 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
| 13 | 2, 12 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0})) |
| 14 | 13 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑥 ∈ ℕ0) → (𝑓‘𝑥) ∈ (𝑆 ∪ {0})) |
| 15 | | ssun2 4159 |
. . . . . . . . . . . 12
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 16 | | c0ex 11234 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 17 | 16 | snss 4766 |
. . . . . . . . . . . 12
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
| 18 | 15, 17 | mpbir 231 |
. . . . . . . . . . 11
⊢ 0 ∈
(𝑆 ∪
{0}) |
| 19 | | ifcl 4551 |
. . . . . . . . . . 11
⊢ (((𝑓‘𝑥) ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) ∈ (𝑆 ∪ {0})) |
| 20 | 14, 18, 19 | sylancl 586 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) ∈ (𝑆 ∪ {0})) |
| 21 | 20 | fmpttd 7110 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})) |
| 22 | | elmapg 8858 |
. . . . . . . . . 10
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
| 23 | 9, 10, 22 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
| 24 | 21, 23 | mpbird 257 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
| 25 | | eleq1w 2818 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛))) |
| 26 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑓‘𝑥) = (𝑓‘𝑘)) |
| 27 | 25, 26 | ifbieq1d 4530 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 28 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) |
| 29 | | fvex 6894 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑘) ∈ V |
| 30 | 29, 16 | ifex 4556 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) ∈ V |
| 31 | 27, 28, 30 | fvmpt 6991 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 32 | 31 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 33 | | iffalse 4514 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) = 0) |
| 34 | 33 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 ∈ (0...𝑛) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = 0)) |
| 35 | 32, 34 | syl5ibcom 245 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (¬
𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = 0)) |
| 36 | 35 | necon1ad 2950 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑛))) |
| 37 | | elfzle2 13550 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ≤ 𝑛) |
| 38 | 36, 37 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ (𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ 𝑘 ∈ ℕ0)) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
| 39 | 38 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
| 40 | 39 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ∀𝑘 ∈ ℕ0 (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛)) |
| 41 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 𝑛 ∈ ℕ0) |
| 42 | | 0cnd 11233 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → 0 ∈ ℂ) |
| 43 | 42 | snssd 4790 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → {0} ⊆ ℂ) |
| 44 | 3, 43 | unssd 4172 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 45 | 21, 44 | fssd 6728 |
. . . . . . . . . 10
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥),
0)):ℕ0⟶ℂ) |
| 46 | | plyco0 26154 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ (𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶ℂ)
→ (((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛))) |
| 47 | 41, 45, 46 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑛))) |
| 48 | 40, 47 | mpbird 257 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0}) |
| 49 | | eqidd 2737 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
| 50 | | imaeq1 6047 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1)))) |
| 51 | 50 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0})) |
| 52 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎‘𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘)) |
| 53 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 54 | 53, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 55 | | iftrue 4511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) = (𝑓‘𝑘)) |
| 56 | 54, 55 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = (𝑓‘𝑘)) |
| 57 | 52, 56 | sylan9eq 2791 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) = (𝑓‘𝑘)) |
| 58 | 57 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝑓‘𝑘) · (𝑧↑𝑘))) |
| 59 | 58 | sumeq2dv 15723 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) |
| 60 | 59 | mpteq2dv 5220 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
| 61 | 60 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
| 62 | 51, 61 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))))) |
| 63 | 62 | rspcev 3606 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 64 | 24, 48, 49, 63 | syl12anc 836 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 65 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 66 | 65 | anbi2d 630 |
. . . . . . . 8
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 67 | 66 | rexbidv 3165 |
. . . . . . 7
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 68 | 64, 67 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 69 | 68 | rexlimdva 3142 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
→ (∃𝑓 ∈
((𝑆 ∪ {0})
↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 70 | 69 | reximdva 3154 |
. . . 4
⊢ (𝑆 ⊆ ℂ →
(∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 71 | 70 | imdistani 568 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 72 | 1, 71 | sylbi 217 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 73 | | simpr 484 |
. . . . . 6
⊢ (((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 74 | 73 | reximi 3075 |
. . . . 5
⊢
(∃𝑎 ∈
((𝑆 ∪ {0})
↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 75 | 74 | reximi 3075 |
. . . 4
⊢
(∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 76 | 75 | anim2i 617 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 77 | | elply 26157 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 78 | 76, 77 | sylibr 234 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → 𝐹 ∈ (Poly‘𝑆)) |
| 79 | 72, 78 | impbii 209 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |