Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcmp2 Structured version   Visualization version   GIF version

Theorem lsatcmp2 38989
Description: If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 38988. TODO: can lspsncmp 21032 shorten this? (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lsatcmp2.o 0 = (0g𝑊)
lsatcmp2.a 𝐴 = (LSAtoms‘𝑊)
lsatcmp2.w (𝜑𝑊 ∈ LVec)
lsatcmp2.t (𝜑𝑇𝐴)
lsatcmp2.u (𝜑 → (𝑈𝐴𝑈 = { 0 }))
Assertion
Ref Expression
lsatcmp2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lsatcmp2
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑇𝑈) → 𝑇𝑈)
2 lsatcmp2.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
3 lsatcmp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 480 . . . . 5 ((𝜑𝑇𝑈) → 𝑊 ∈ LVec)
5 lsatcmp2.t . . . . . 6 (𝜑𝑇𝐴)
65adantr 480 . . . . 5 ((𝜑𝑇𝑈) → 𝑇𝐴)
7 lsatcmp2.o . . . . . . 7 0 = (0g𝑊)
8 lveclmod 21019 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
109adantr 480 . . . . . . 7 ((𝜑𝑇𝑈) → 𝑊 ∈ LMod)
117, 2, 10, 6, 1lsatssn0 38987 . . . . . 6 ((𝜑𝑇𝑈) → 𝑈 ≠ { 0 })
12 lsatcmp2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 = { 0 }))
1312ord 864 . . . . . . . 8 (𝜑 → (¬ 𝑈𝐴𝑈 = { 0 }))
1413necon1ad 2944 . . . . . . 7 (𝜑 → (𝑈 ≠ { 0 } → 𝑈𝐴))
1514adantr 480 . . . . . 6 ((𝜑𝑇𝑈) → (𝑈 ≠ { 0 } → 𝑈𝐴))
1611, 15mpd 15 . . . . 5 ((𝜑𝑇𝑈) → 𝑈𝐴)
172, 4, 6, 16lsatcmp 38988 . . . 4 ((𝜑𝑇𝑈) → (𝑇𝑈𝑇 = 𝑈))
181, 17mpbid 232 . . 3 ((𝜑𝑇𝑈) → 𝑇 = 𝑈)
1918ex 412 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
20 eqimss 4013 . 2 (𝑇 = 𝑈𝑇𝑈)
2119, 20impbid1 225 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2927  wss 3922  {csn 4597  cfv 6519  0gc0g 17408  LModclmod 20772  LVecclvec 21015  LSAtomsclsa 38959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38961
This theorem is referenced by:  mapdrvallem2  41631
  Copyright terms: Public domain W3C validator