Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcmp2 Structured version   Visualization version   GIF version

Theorem lsatcmp2 38608
Description: If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 38607. TODO: can lspsncmp 21021 shorten this? (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lsatcmp2.o 0 = (0g𝑊)
lsatcmp2.a 𝐴 = (LSAtoms‘𝑊)
lsatcmp2.w (𝜑𝑊 ∈ LVec)
lsatcmp2.t (𝜑𝑇𝐴)
lsatcmp2.u (𝜑 → (𝑈𝐴𝑈 = { 0 }))
Assertion
Ref Expression
lsatcmp2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lsatcmp2
StepHypRef Expression
1 simpr 483 . . . 4 ((𝜑𝑇𝑈) → 𝑇𝑈)
2 lsatcmp2.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
3 lsatcmp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 479 . . . . 5 ((𝜑𝑇𝑈) → 𝑊 ∈ LVec)
5 lsatcmp2.t . . . . . 6 (𝜑𝑇𝐴)
65adantr 479 . . . . 5 ((𝜑𝑇𝑈) → 𝑇𝐴)
7 lsatcmp2.o . . . . . . 7 0 = (0g𝑊)
8 lveclmod 21008 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
109adantr 479 . . . . . . 7 ((𝜑𝑇𝑈) → 𝑊 ∈ LMod)
117, 2, 10, 6, 1lsatssn0 38606 . . . . . 6 ((𝜑𝑇𝑈) → 𝑈 ≠ { 0 })
12 lsatcmp2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 = { 0 }))
1312ord 862 . . . . . . . 8 (𝜑 → (¬ 𝑈𝐴𝑈 = { 0 }))
1413necon1ad 2946 . . . . . . 7 (𝜑 → (𝑈 ≠ { 0 } → 𝑈𝐴))
1514adantr 479 . . . . . 6 ((𝜑𝑇𝑈) → (𝑈 ≠ { 0 } → 𝑈𝐴))
1611, 15mpd 15 . . . . 5 ((𝜑𝑇𝑈) → 𝑈𝐴)
172, 4, 6, 16lsatcmp 38607 . . . 4 ((𝜑𝑇𝑈) → (𝑇𝑈𝑇 = 𝑈))
181, 17mpbid 231 . . 3 ((𝜑𝑇𝑈) → 𝑇 = 𝑈)
1918ex 411 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
20 eqimss 4035 . 2 (𝑇 = 𝑈𝑇𝑈)
2119, 20impbid1 224 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wss 3944  {csn 4630  cfv 6549  0gc0g 17429  LModclmod 20760  LVecclvec 21004  LSAtomsclsa 38578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-grp 18906  df-minusg 18907  df-sbg 18908  df-cmn 19754  df-abl 19755  df-mgp 20092  df-rng 20110  df-ur 20139  df-ring 20192  df-oppr 20290  df-dvdsr 20313  df-unit 20314  df-invr 20344  df-drng 20643  df-lmod 20762  df-lss 20833  df-lsp 20873  df-lvec 21005  df-lsatoms 38580
This theorem is referenced by:  mapdrvallem2  41250
  Copyright terms: Public domain W3C validator