MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemullem Structured version   Visualization version   GIF version

Theorem coemullem 25611
Description: Lemma for coemul 25613 and dgrmul 25631. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemullem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝑀   𝑘,𝐺,𝑛   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛
Allowed substitution hint:   𝑀(𝑛)

Proof of Theorem coemullem
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plymulcl 25582 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
2 coeadd.3 . . . . 5 𝑀 = (deg‘𝐹)
3 dgrcl 25594 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
42, 3eqeltrid 2842 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
5 coeadd.4 . . . . 5 𝑁 = (deg‘𝐺)
6 dgrcl 25594 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6eqeltrid 2842 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
8 nn0addcl 12448 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
94, 7, 8syl2an 596 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
10 fzfid 13878 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
11 coefv0.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
1211coef3 25593 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1312adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
1413adantr 481 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
15 elfznn0 13534 . . . . . . 7 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
16 ffvelcdm 7032 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1714, 15, 16syl2an 596 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
18 coeadd.2 . . . . . . . . . 10 𝐵 = (coeff‘𝐺)
1918coef3 25593 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
2019adantl 482 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
2120ad2antrr 724 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐵:ℕ0⟶ℂ)
22 fznn0sub 13473 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
2322adantl 482 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛𝑘) ∈ ℕ0)
2421, 23ffvelcdmd 7036 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ ℂ)
2517, 24mulcld 11175 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
2610, 25fsumcl 15618 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
2726fmpttd 7063 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ)
28 oveq2 7365 . . . . . . . . . . 11 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
29 fvoveq1 7380 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝐵‘(𝑛𝑘)) = (𝐵‘(𝑗𝑘)))
3029oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3130adantr 481 . . . . . . . . . . 11 ((𝑛 = 𝑗𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3228, 31sumeq12dv 15591 . . . . . . . . . 10 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
33 eqid 2736 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))
34 sumex 15572 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) ∈ V
3532, 33, 34fvmpt 6948 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3635ad2antrl 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
37 simp2r 1200 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ 𝑗 ≤ (𝑀 + 𝑁))
38 simp2l 1199 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℕ0)
3938nn0red 12474 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℝ)
40 simp3l 1201 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ (0...𝑗))
41 elfznn0 13534 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℕ0)
4342nn0red 12474 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℝ)
447adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
45443ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℕ0)
4645nn0red 12474 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℝ)
4739, 43, 46lesubadd2d 11754 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑘 + 𝑁)))
484adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℕ0)
5049nn0red 12474 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℝ)
51 simp3r 1202 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘𝑀)
5243, 50, 46, 51leadd1dd 11769 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ≤ (𝑀 + 𝑁))
5343, 46readdcld 11184 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ∈ ℝ)
5450, 46readdcld 11184 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑀 + 𝑁) ∈ ℝ)
55 letr 11249 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ (𝑘 + 𝑁) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5639, 53, 54, 55syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5752, 56mpan2d 692 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗 ≤ (𝑘 + 𝑁) → 𝑗 ≤ (𝑀 + 𝑁)))
5847, 57sylbid 239 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑀 + 𝑁)))
5937, 58mtod 197 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ (𝑗𝑘) ≤ 𝑁)
60 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
61603ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐺 ∈ (Poly‘𝑆))
62 fznn0sub 13473 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...𝑗) → (𝑗𝑘) ∈ ℕ0)
6340, 62syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗𝑘) ∈ ℕ0)
6418, 5dgrub 25595 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0 ∧ (𝐵‘(𝑗𝑘)) ≠ 0) → (𝑗𝑘) ≤ 𝑁)
65643expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6661, 63, 65syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6766necon1bd 2961 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (¬ (𝑗𝑘) ≤ 𝑁 → (𝐵‘(𝑗𝑘)) = 0))
6859, 67mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐵‘(𝑗𝑘)) = 0)
6968oveq2d 7373 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = ((𝐴𝑘) · 0))
70133ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐴:ℕ0⟶ℂ)
7170, 42ffvelcdmd 7036 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐴𝑘) ∈ ℂ)
7271mul01d 11354 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · 0) = 0)
7369, 72eqtrd 2776 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
74733expia 1121 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0))
7574impl 456 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
76 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
7776adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → 𝐹 ∈ (Poly‘𝑆))
7811, 2dgrub 25595 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
79783expia 1121 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8077, 41, 79syl2an 596 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8180necon1bd 2961 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
8281imp 407 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
8382oveq1d 7372 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = (0 · (𝐵‘(𝑗𝑘))))
8420ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
8562ad2antlr 725 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝑗𝑘) ∈ ℕ0)
8684, 85ffvelcdmd 7036 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐵‘(𝑗𝑘)) ∈ ℂ)
8786mul02d 11353 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘(𝑗𝑘))) = 0)
8883, 87eqtrd 2776 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
8975, 88pm2.61dan 811 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9089sumeq2dv 15588 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = Σ𝑘 ∈ (0...𝑗)0)
91 fzfi 13877 . . . . . . . . . . 11 (0...𝑗) ∈ Fin
9291olci 864 . . . . . . . . . 10 ((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin)
93 sumz 15607 . . . . . . . . . 10 (((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin) → Σ𝑘 ∈ (0...𝑗)0 = 0)
9492, 93ax-mp 5 . . . . . . . . 9 Σ𝑘 ∈ (0...𝑗)0 = 0
9590, 94eqtrdi 2792 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9636, 95eqtrd 2776 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0)
9796expr 457 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗 ≤ (𝑀 + 𝑁) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0))
9897necon1ad 2960 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
9998ralrimiva 3143 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
100 plyco0 25553 . . . . 5 (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
1019, 27, 100syl2anc 584 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
10299, 101mpbird 256 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0})
10311, 2dgrub2 25596 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
104103adantr 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
10518, 5dgrub2 25596 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
106105adantl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
10711, 2coeid 25599 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
108107adantr 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
10918, 5coeid 25599 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
110109adantl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
11176, 60, 48, 44, 13, 20, 104, 106, 108, 110plymullem1 25575 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))))
112 elfznn0 13534 . . . . . . . 8 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ0)
113112, 35syl 17 . . . . . . 7 (𝑗 ∈ (0...(𝑀 + 𝑁)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
114113oveq1d 7372 . . . . . 6 (𝑗 ∈ (0...(𝑀 + 𝑁)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = (Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
115114sumeq2i 15584 . . . . 5 Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))
116115mpteq2i 5210 . . . 4 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
117111, 116eqtr4di 2794 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))))
1181, 9, 27, 102, 117coeeq 25588 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))))
119 ffvelcdm 7032 . . . 4 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
12027, 112, 119syl2an 596 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
1211, 9, 120, 117dgrle 25604 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
122118, 121jca 512 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  0cn0 12413  cuz 12763  ...cfz 13424  cexp 13967  Σcsu 15570  Polycply 25545  coeffccoe 25547  degcdgr 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552
This theorem is referenced by:  coemul  25613  dgrmul2  25630
  Copyright terms: Public domain W3C validator