MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemullem Structured version   Visualization version   GIF version

Theorem coemullem 24758
Description: Lemma for coemul 24760 and dgrmul 24778. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemullem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝑀   𝑘,𝐺,𝑛   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛
Allowed substitution hint:   𝑀(𝑛)

Proof of Theorem coemullem
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plymulcl 24729 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
2 coeadd.3 . . . . 5 𝑀 = (deg‘𝐹)
3 dgrcl 24741 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
42, 3eqeltrid 2921 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
5 coeadd.4 . . . . 5 𝑁 = (deg‘𝐺)
6 dgrcl 24741 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6eqeltrid 2921 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
8 nn0addcl 11924 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
94, 7, 8syl2an 595 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
10 fzfid 13334 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
11 coefv0.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
1211coef3 24740 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1312adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
1413adantr 481 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
15 elfznn0 12993 . . . . . . 7 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
16 ffvelrn 6844 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1714, 15, 16syl2an 595 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
18 coeadd.2 . . . . . . . . . 10 𝐵 = (coeff‘𝐺)
1918coef3 24740 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
2019adantl 482 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
2120ad2antrr 722 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐵:ℕ0⟶ℂ)
22 fznn0sub 12932 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
2322adantl 482 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛𝑘) ∈ ℕ0)
2421, 23ffvelrnd 6847 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ ℂ)
2517, 24mulcld 10653 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
2610, 25fsumcl 15083 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
2726fmpttd 6874 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ)
28 oveq2 7159 . . . . . . . . . . 11 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
29 fvoveq1 7174 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝐵‘(𝑛𝑘)) = (𝐵‘(𝑗𝑘)))
3029oveq2d 7167 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3130adantr 481 . . . . . . . . . . 11 ((𝑛 = 𝑗𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3228, 31sumeq12dv 15056 . . . . . . . . . 10 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
33 eqid 2825 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))
34 sumex 15037 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) ∈ V
3532, 33, 34fvmpt 6764 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3635ad2antrl 724 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
37 simp2r 1194 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ 𝑗 ≤ (𝑀 + 𝑁))
38 simp2l 1193 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℕ0)
3938nn0red 11948 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℝ)
40 simp3l 1195 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ (0...𝑗))
41 elfznn0 12993 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℕ0)
4342nn0red 11948 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℝ)
447adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
45443ad2ant1 1127 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℕ0)
4645nn0red 11948 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℝ)
4739, 43, 46lesubadd2d 11231 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑘 + 𝑁)))
484adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
49483ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℕ0)
5049nn0red 11948 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℝ)
51 simp3r 1196 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘𝑀)
5243, 50, 46, 51leadd1dd 11246 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ≤ (𝑀 + 𝑁))
5343, 46readdcld 10662 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ∈ ℝ)
5450, 46readdcld 10662 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑀 + 𝑁) ∈ ℝ)
55 letr 10726 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ (𝑘 + 𝑁) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5639, 53, 54, 55syl3anc 1365 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5752, 56mpan2d 690 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗 ≤ (𝑘 + 𝑁) → 𝑗 ≤ (𝑀 + 𝑁)))
5847, 57sylbid 241 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑀 + 𝑁)))
5937, 58mtod 199 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ (𝑗𝑘) ≤ 𝑁)
60 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
61603ad2ant1 1127 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐺 ∈ (Poly‘𝑆))
62 fznn0sub 12932 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...𝑗) → (𝑗𝑘) ∈ ℕ0)
6340, 62syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗𝑘) ∈ ℕ0)
6418, 5dgrub 24742 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0 ∧ (𝐵‘(𝑗𝑘)) ≠ 0) → (𝑗𝑘) ≤ 𝑁)
65643expia 1115 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6661, 63, 65syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6766necon1bd 3038 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (¬ (𝑗𝑘) ≤ 𝑁 → (𝐵‘(𝑗𝑘)) = 0))
6859, 67mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐵‘(𝑗𝑘)) = 0)
6968oveq2d 7167 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = ((𝐴𝑘) · 0))
70133ad2ant1 1127 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐴:ℕ0⟶ℂ)
7170, 42ffvelrnd 6847 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐴𝑘) ∈ ℂ)
7271mul01d 10831 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · 0) = 0)
7369, 72eqtrd 2860 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
74733expia 1115 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0))
7574impl 456 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
76 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
7776adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → 𝐹 ∈ (Poly‘𝑆))
7811, 2dgrub 24742 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
79783expia 1115 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8077, 41, 79syl2an 595 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8180necon1bd 3038 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
8281imp 407 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
8382oveq1d 7166 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = (0 · (𝐵‘(𝑗𝑘))))
8420ad3antrrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
8562ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝑗𝑘) ∈ ℕ0)
8684, 85ffvelrnd 6847 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐵‘(𝑗𝑘)) ∈ ℂ)
8786mul02d 10830 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘(𝑗𝑘))) = 0)
8883, 87eqtrd 2860 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
8975, 88pm2.61dan 809 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9089sumeq2dv 15053 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = Σ𝑘 ∈ (0...𝑗)0)
91 fzfi 13333 . . . . . . . . . . 11 (0...𝑗) ∈ Fin
9291olci 862 . . . . . . . . . 10 ((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin)
93 sumz 15072 . . . . . . . . . 10 (((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin) → Σ𝑘 ∈ (0...𝑗)0 = 0)
9492, 93ax-mp 5 . . . . . . . . 9 Σ𝑘 ∈ (0...𝑗)0 = 0
9590, 94syl6eq 2876 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9636, 95eqtrd 2860 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0)
9796expr 457 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗 ≤ (𝑀 + 𝑁) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0))
9897necon1ad 3037 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
9998ralrimiva 3186 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
100 plyco0 24700 . . . . 5 (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
1019, 27, 100syl2anc 584 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
10299, 101mpbird 258 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0})
10311, 2dgrub2 24743 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
104103adantr 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
10518, 5dgrub2 24743 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
106105adantl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
10711, 2coeid 24746 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
108107adantr 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
10918, 5coeid 24746 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
110109adantl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
11176, 60, 48, 44, 13, 20, 104, 106, 108, 110plymullem1 24722 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))))
112 elfznn0 12993 . . . . . . . 8 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ0)
113112, 35syl 17 . . . . . . 7 (𝑗 ∈ (0...(𝑀 + 𝑁)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
114113oveq1d 7166 . . . . . 6 (𝑗 ∈ (0...(𝑀 + 𝑁)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = (Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
115114sumeq2i 15049 . . . . 5 Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))
116115mpteq2i 5154 . . . 4 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
117111, 116syl6eqr 2878 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))))
1181, 9, 27, 102, 117coeeq 24735 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))))
119 ffvelrn 6844 . . . 4 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
12027, 112, 119syl2an 595 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
1211, 9, 120, 117dgrle 24751 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
122118, 121jca 512 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  wss 3939  {csn 4563   class class class wbr 5062  cmpt 5142  cima 5556  wf 6347  cfv 6351  (class class class)co 7151  f cof 7400  Fincfn 8501  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cle 10668  cmin 10862  0cn0 11889  cuz 12235  ...cfz 12885  cexp 13422  Σcsu 15035  Polycply 24692  coeffccoe 24694  degcdgr 24695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-0p 24189  df-ply 24696  df-coe 24698  df-dgr 24699
This theorem is referenced by:  coemul  24760  dgrmul2  24777
  Copyright terms: Public domain W3C validator