![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1ge | Structured version Visualization version GIF version |
Description: Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1ge | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐴‘𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . . . 6 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1leb.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1leb.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
4 | 1, 2, 3 | deg1xrcl 24248 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
5 | nn0re 11635 | . . . . . 6 ⊢ (𝐺 ∈ ℕ0 → 𝐺 ∈ ℝ) | |
6 | 5 | rexrd 10413 | . . . . 5 ⊢ (𝐺 ∈ ℕ0 → 𝐺 ∈ ℝ*) |
7 | xrltnle 10431 | . . . . 5 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) < 𝐺 ↔ ¬ 𝐺 ≤ (𝐷‘𝐹))) | |
8 | 4, 6, 7 | syl2an 589 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0) → ((𝐷‘𝐹) < 𝐺 ↔ ¬ 𝐺 ≤ (𝐷‘𝐹))) |
9 | deg1leb.y | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
10 | deg1leb.a | . . . . . 6 ⊢ 𝐴 = (coe1‘𝐹) | |
11 | 1, 2, 3, 9, 10 | deg1lt 24263 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) |
12 | 11 | 3expia 1154 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0) → ((𝐷‘𝐹) < 𝐺 → (𝐴‘𝐺) = 0 )) |
13 | 8, 12 | sylbird 252 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0) → (¬ 𝐺 ≤ (𝐷‘𝐹) → (𝐴‘𝐺) = 0 )) |
14 | 13 | necon1ad 3016 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0) → ((𝐴‘𝐺) ≠ 0 → 𝐺 ≤ (𝐷‘𝐹))) |
15 | 14 | 3impia 1149 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐴‘𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 ‘cfv 6127 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 ℕ0cn0 11625 Basecbs 16229 0gc0g 16460 Poly1cpl1 19914 coe1cco1 19915 deg1 cdg1 24220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-sup 8623 df-oi 8691 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-fzo 12768 df-seq 13103 df-hash 13418 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-0g 16462 df-gsum 16463 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-grp 17786 df-minusg 17787 df-mulg 17902 df-cntz 18107 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-psr 19724 df-mpl 19726 df-opsr 19728 df-psr1 19917 df-ply1 19919 df-coe1 19920 df-cnfld 20114 df-mdeg 24221 df-deg1 24222 |
This theorem is referenced by: deg1add 24269 deg1mul2 24280 deg1tm 24284 plypf1 24374 |
Copyright terms: Public domain | W3C validator |