![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlatn0 | Structured version Visualization version GIF version |
Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
Ref | Expression |
---|---|
trl0a.z | ⊢ 0 = (0.‘𝐾) |
trl0a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trl0a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trl0a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trl0a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlatn0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 35430 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | ad3antrrr 721 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat) |
3 | trl0a.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | trl0a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atn0 35378 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
6 | 2, 5 | sylancom 582 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
7 | 6 | ex 403 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) ≠ 0 )) |
8 | trl0a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | trl0a.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trl0a.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 3, 4, 8, 9, 10 | trlator0 36241 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = 0 )) |
12 | 11 | ord 895 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ (𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) = 0 )) |
13 | 12 | necon1ad 3016 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ≠ 0 → (𝑅‘𝐹) ∈ 𝐴)) |
14 | 7, 13 | impbid 204 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ‘cfv 6127 0.cp0 17397 Atomscatm 35333 AtLatcal 35334 HLchlt 35420 LHypclh 36054 LTrncltrn 36171 trLctrl 36228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-map 8129 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 |
This theorem is referenced by: trlid0b 36248 cdlemg12e 36717 trlcoat 36793 |
Copyright terms: Public domain | W3C validator |