Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlatn0 | Structured version Visualization version GIF version |
Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
Ref | Expression |
---|---|
trl0a.z | ⊢ 0 = (0.‘𝐾) |
trl0a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trl0a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trl0a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trl0a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlatn0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 36986 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | ad3antrrr 730 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat) |
3 | trl0a.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
4 | trl0a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atn0 36934 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
6 | 2, 5 | sylancom 591 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
7 | 6 | ex 416 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) ≠ 0 )) |
8 | trl0a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | trl0a.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trl0a.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 3, 4, 8, 9, 10 | trlator0 37797 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = 0 )) |
12 | 11 | ord 863 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ (𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) = 0 )) |
13 | 12 | necon1ad 2951 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ≠ 0 → (𝑅‘𝐹) ∈ 𝐴)) |
14 | 7, 13 | impbid 215 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ‘cfv 6333 0.cp0 17756 Atomscatm 36889 AtLatcal 36890 HLchlt 36976 LHypclh 37610 LTrncltrn 37727 trLctrl 37784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-map 8432 df-proset 17647 df-poset 17665 df-plt 17677 df-lub 17693 df-glb 17694 df-join 17695 df-meet 17696 df-p0 17758 df-p1 17759 df-lat 17765 df-clat 17827 df-oposet 36802 df-ol 36804 df-oml 36805 df-covers 36892 df-ats 36893 df-atl 36924 df-cvlat 36948 df-hlat 36977 df-lhyp 37614 df-laut 37615 df-ldil 37730 df-ltrn 37731 df-trl 37785 |
This theorem is referenced by: trlid0b 37804 cdlemg12e 38273 trlcoat 38349 |
Copyright terms: Public domain | W3C validator |