| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlatn0 | Structured version Visualization version GIF version | ||
| Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
| Ref | Expression |
|---|---|
| trl0a.z | ⊢ 0 = (0.‘𝐾) |
| trl0a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trl0a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trl0a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trl0a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlatn0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39360 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | 1 | ad3antrrr 730 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 3 | trl0a.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | trl0a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atn0 39308 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
| 6 | 2, 5 | sylancom 588 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
| 7 | 6 | ex 412 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) ≠ 0 )) |
| 8 | trl0a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | trl0a.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trl0a.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 3, 4, 8, 9, 10 | trlator0 40172 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = 0 )) |
| 12 | 11 | ord 864 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ (𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) = 0 )) |
| 13 | 12 | necon1ad 2943 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ≠ 0 → (𝑅‘𝐹) ∈ 𝐴)) |
| 14 | 7, 13 | impbid 212 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 0.cp0 18389 Atomscatm 39263 AtLatcal 39264 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 trLctrl 40159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 |
| This theorem is referenced by: trlid0b 40179 cdlemg12e 40648 trlcoat 40724 |
| Copyright terms: Public domain | W3C validator |