Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlatn0 Structured version   Visualization version   GIF version

Theorem trlatn0 40139
Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlatn0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))

Proof of Theorem trlatn0
StepHypRef Expression
1 hlatl 39326 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21ad3antrrr 730 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat)
3 trl0a.z . . . . 5 0 = (0.‘𝐾)
4 trl0a.a . . . . 5 𝐴 = (Atoms‘𝐾)
53, 4atn0 39274 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ 0 )
62, 5sylancom 588 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ 0 )
76ex 412 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ 0 ))
8 trl0a.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trl0a.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trl0a.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
113, 4, 8, 9, 10trlator0 40138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
1211ord 864 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) = 0 ))
1312necon1ad 2942 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
147, 13impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6499  0.cp0 18358  Atomscatm 39229  AtLatcal 39230  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126
This theorem is referenced by:  trlid0b  40145  cdlemg12e  40614  trlcoat  40690
  Copyright terms: Public domain W3C validator