| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlatn0 | Structured version Visualization version GIF version | ||
| Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
| Ref | Expression |
|---|---|
| trl0a.z | ⊢ 0 = (0.‘𝐾) |
| trl0a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trl0a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trl0a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trl0a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlatn0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39349 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | 1 | ad3antrrr 730 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 3 | trl0a.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | trl0a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atn0 39297 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
| 6 | 2, 5 | sylancom 588 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐹) ∈ 𝐴) → (𝑅‘𝐹) ≠ 0 ) |
| 7 | 6 | ex 412 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) ≠ 0 )) |
| 8 | trl0a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | trl0a.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trl0a.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 3, 4, 8, 9, 10 | trlator0 40160 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = 0 )) |
| 12 | 11 | ord 864 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ (𝑅‘𝐹) ∈ 𝐴 → (𝑅‘𝐹) = 0 )) |
| 13 | 12 | necon1ad 2942 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ≠ 0 → (𝑅‘𝐹) ∈ 𝐴)) |
| 14 | 7, 13 | impbid 212 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 0.cp0 18327 Atomscatm 39252 AtLatcal 39253 HLchlt 39339 LHypclh 39973 LTrncltrn 40090 trLctrl 40147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39165 df-ol 39167 df-oml 39168 df-covers 39255 df-ats 39256 df-atl 39287 df-cvlat 39311 df-hlat 39340 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 |
| This theorem is referenced by: trlid0b 40167 cdlemg12e 40636 trlcoat 40712 |
| Copyright terms: Public domain | W3C validator |