Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcmp Structured version   Visualization version   GIF version

Theorem lsatcmp 38959
Description: If two atoms are comparable, they are equal. (atsseq 32379 analog.) TODO: can lspsncmp 21141 shorten this? (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatcmp.a 𝐴 = (LSAtoms‘𝑊)
lsatcmp.w (𝜑𝑊 ∈ LVec)
lsatcmp.t (𝜑𝑇𝐴)
lsatcmp.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lsatcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatcmp.u . . 3 (𝜑𝑈𝐴)
2 lsatcmp.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 21128 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2740 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2740 . . . . 5 (0g𝑊) = (0g𝑊)
8 lsatcmp.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
95, 6, 7, 8islsat 38947 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
104, 9syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
111, 10mpbid 232 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}))
12 eldifsn 4811 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)))
13 lsatcmp.t . . . . . . . . . . 11 (𝜑𝑇𝐴)
147, 8, 4, 13lsatn0 38955 . . . . . . . . . 10 (𝜑𝑇 ≠ {(0g𝑊)})
1514ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ≠ {(0g𝑊)})
162ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec)
17 eqid 2740 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1817, 8, 4, 13lsatlssel 38953 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (LSubSp‘𝑊))
1918ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ∈ (LSubSp‘𝑊))
20 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ (Base‘𝑊))
21 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
225, 7, 17, 6lspsnat 21170 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2316, 19, 20, 21, 22syl31anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2423ord 863 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = {(0g𝑊)}))
2524necon1ad 2963 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 ≠ {(0g𝑊)} → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
2615, 25mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 = ((LSpan‘𝑊)‘{𝑣}))
2726ex 412 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
28 eqimss 4067 . . . . . . 7 (𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
2927, 28impbid1 225 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3029ex 412 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3112, 30biimtrid 242 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
32 sseq2 4035 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})))
33 eqeq2 2752 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 = 𝑈𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3432, 33bibi12d 345 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑇 = 𝑈) ↔ (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3534biimprcd 250 . . . 4 ((𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3631, 35syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈))))
3736rexlimdv 3159 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3811, 37mpd 15 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  {csn 4648  cfv 6573  Basecbs 17258  0gc0g 17499  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LVecclvec 21124  LSAtomsclsa 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932
This theorem is referenced by:  lsatcmp2  38960  lsatel  38961  lsatnem0  39001  dvh2dimatN  41397
  Copyright terms: Public domain W3C validator