Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcmp Structured version   Visualization version   GIF version

Theorem lsatcmp 38701
Description: If two atoms are comparable, they are equal. (atsseq 32280 analog.) TODO: can lspsncmp 21097 shorten this? (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatcmp.a 𝐴 = (LSAtoms‘𝑊)
lsatcmp.w (𝜑𝑊 ∈ LVec)
lsatcmp.t (𝜑𝑇𝐴)
lsatcmp.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lsatcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatcmp.u . . 3 (𝜑𝑈𝐴)
2 lsatcmp.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 21084 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 eqid 2726 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2726 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2726 . . . . 5 (0g𝑊) = (0g𝑊)
8 lsatcmp.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
95, 6, 7, 8islsat 38689 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
104, 9syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
111, 10mpbid 231 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}))
12 eldifsn 4795 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)))
13 lsatcmp.t . . . . . . . . . . 11 (𝜑𝑇𝐴)
147, 8, 4, 13lsatn0 38697 . . . . . . . . . 10 (𝜑𝑇 ≠ {(0g𝑊)})
1514ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ≠ {(0g𝑊)})
162ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec)
17 eqid 2726 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1817, 8, 4, 13lsatlssel 38695 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (LSubSp‘𝑊))
1918ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ∈ (LSubSp‘𝑊))
20 simplrl 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ (Base‘𝑊))
21 simpr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
225, 7, 17, 6lspsnat 21126 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2316, 19, 20, 21, 22syl31anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2423ord 862 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = {(0g𝑊)}))
2524necon1ad 2947 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 ≠ {(0g𝑊)} → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
2615, 25mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 = ((LSpan‘𝑊)‘{𝑣}))
2726ex 411 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
28 eqimss 4038 . . . . . . 7 (𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
2927, 28impbid1 224 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3029ex 411 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3112, 30biimtrid 241 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
32 sseq2 4006 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})))
33 eqeq2 2738 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 = 𝑈𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3432, 33bibi12d 344 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑇 = 𝑈) ↔ (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3534biimprcd 249 . . . 4 ((𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3631, 35syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈))))
3736rexlimdv 3143 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3811, 37mpd 15 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944  wss 3947  {csn 4633  cfv 6554  Basecbs 17213  0gc0g 17454  LModclmod 20836  LSubSpclss 20908  LSpanclspn 20948  LVecclvec 21080  LSAtomsclsa 38672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-drng 20709  df-lmod 20838  df-lss 20909  df-lsp 20949  df-lvec 21081  df-lsatoms 38674
This theorem is referenced by:  lsatcmp2  38702  lsatel  38703  lsatnem0  38743  dvh2dimatN  41139
  Copyright terms: Public domain W3C validator