Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcmp Structured version   Visualization version   GIF version

Theorem lsatcmp 39003
Description: If two atoms are comparable, they are equal. (atsseq 32283 analog.) TODO: can lspsncmp 21033 shorten this? (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatcmp.a 𝐴 = (LSAtoms‘𝑊)
lsatcmp.w (𝜑𝑊 ∈ LVec)
lsatcmp.t (𝜑𝑇𝐴)
lsatcmp.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lsatcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatcmp.u . . 3 (𝜑𝑈𝐴)
2 lsatcmp.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 21020 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2730 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2730 . . . . 5 (0g𝑊) = (0g𝑊)
8 lsatcmp.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
95, 6, 7, 8islsat 38991 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
104, 9syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣})))
111, 10mpbid 232 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}))
12 eldifsn 4753 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)))
13 lsatcmp.t . . . . . . . . . . 11 (𝜑𝑇𝐴)
147, 8, 4, 13lsatn0 38999 . . . . . . . . . 10 (𝜑𝑇 ≠ {(0g𝑊)})
1514ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ≠ {(0g𝑊)})
162ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec)
17 eqid 2730 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1817, 8, 4, 13lsatlssel 38997 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (LSubSp‘𝑊))
1918ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ∈ (LSubSp‘𝑊))
20 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ (Base‘𝑊))
21 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
225, 7, 17, 6lspsnat 21062 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2316, 19, 20, 21, 22syl31anc 1375 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 = ((LSpan‘𝑊)‘{𝑣}) ∨ 𝑇 = {(0g𝑊)}))
2423ord 864 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = {(0g𝑊)}))
2524necon1ad 2943 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → (𝑇 ≠ {(0g𝑊)} → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
2615, 25mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) ∧ 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})) → 𝑇 = ((LSpan‘𝑊)‘{𝑣}))
2726ex 412 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) → 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
28 eqimss 4008 . . . . . . 7 (𝑇 = ((LSpan‘𝑊)‘{𝑣}) → 𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}))
2927, 28impbid1 225 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊))) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3029ex 412 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ (0g𝑊)) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3112, 30biimtrid 242 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
32 sseq2 3976 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣})))
33 eqeq2 2742 . . . . . 6 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 = 𝑈𝑇 = ((LSpan‘𝑊)‘{𝑣})))
3432, 33bibi12d 345 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑇 = 𝑈) ↔ (𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣}))))
3534biimprcd 250 . . . 4 ((𝑇 ⊆ ((LSpan‘𝑊)‘{𝑣}) ↔ 𝑇 = ((LSpan‘𝑊)‘{𝑣})) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3631, 35syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈))))
3736rexlimdv 3133 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇𝑈𝑇 = 𝑈)))
3811, 37mpd 15 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  wss 3917  {csn 4592  cfv 6514  Basecbs 17186  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LVecclvec 21016  LSAtomsclsa 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976
This theorem is referenced by:  lsatcmp2  39004  lsatel  39005  lsatnem0  39045  dvh2dimatN  41441
  Copyright terms: Public domain W3C validator