![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 12250 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
2 | hashcl 14321 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | elnn0 12478 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
5 | 4 | ord 861 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
6 | 5 | necon1ad 2951 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
7 | 1, 6 | impbid2 225 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
8 | hasheq0 14328 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
9 | 8 | necon3bid 2979 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
10 | 7, 9 | bitrd 279 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∅c0 4317 ‘cfv 6537 Fincfn 8941 0cc0 11112 ℕcn 12216 ℕ0cn0 12476 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: hashge1 14354 lennncl 14490 lswlgt0cl 14525 wrdind 14678 wrd2ind 14679 incexc 15789 incexc2 15790 ramub1 16970 gsumwmhm 18770 psgnunilem5 19414 psgnunilem4 19417 gexcl2 19509 sylow1lem3 19520 sylow1lem5 19522 pgpfi 19525 pgpfi2 19526 sylow2alem2 19538 sylow2blem3 19542 slwhash 19544 fislw 19545 sylow3lem3 19549 sylow3lem4 19550 efgsres 19658 efgredlem 19667 lt6abl 19815 ablfacrp2 19989 ablfac1lem 19990 ablfac1b 19992 ablfac1c 19993 ablfac1eu 19995 pgpfac1lem2 19997 pgpfac1lem3a 19998 pgpfaclem2 20004 ablfaclem3 20009 lebnumlem3 24844 birthdaylem3 26840 birthday 26841 amgmlem 26877 amgm 26878 musum 27078 dchrabs 27148 dchrisum0flblem1 27396 cusgrrusgr 29347 frgrreg 30156 tgoldbachgtda 34202 derangfmla 34709 erdszelem2 34711 rrndstprj2 37212 rrncmslem 37213 rrnequiv 37216 sticksstones21 41544 sticksstones22 41545 isnumbasgrplem3 42425 fzisoeu 44582 fourierdlem54 45448 fourierdlem103 45497 fourierdlem104 45498 qndenserrnbllem 45582 ovnhoilem1 45889 hoiqssbllem1 45910 hoiqssbllem2 45911 hoiqssbllem3 45912 vonsn 45979 amgmlemALT 48124 |
Copyright terms: Public domain | W3C validator |