![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 12286 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
2 | hashcl 14357 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | elnn0 12514 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
5 | 4 | ord 862 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
6 | 5 | necon1ad 2954 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
7 | 1, 6 | impbid2 225 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
8 | hasheq0 14364 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
9 | 8 | necon3bid 2982 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
10 | 7, 9 | bitrd 278 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∅c0 4326 ‘cfv 6553 Fincfn 8972 0cc0 11148 ℕcn 12252 ℕ0cn0 12512 ♯chash 14331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-hash 14332 |
This theorem is referenced by: hashge1 14390 lennncl 14526 lswlgt0cl 14561 wrdind 14714 wrd2ind 14715 incexc 15825 incexc2 15826 ramub1 17006 gsumwmhm 18811 psgnunilem5 19463 psgnunilem4 19466 gexcl2 19558 sylow1lem3 19569 sylow1lem5 19571 pgpfi 19574 pgpfi2 19575 sylow2alem2 19587 sylow2blem3 19591 slwhash 19593 fislw 19594 sylow3lem3 19598 sylow3lem4 19599 efgsres 19707 efgredlem 19716 lt6abl 19864 ablfacrp2 20038 ablfac1lem 20039 ablfac1b 20041 ablfac1c 20042 ablfac1eu 20044 pgpfac1lem2 20046 pgpfac1lem3a 20047 pgpfaclem2 20053 ablfaclem3 20058 lebnumlem3 24917 birthdaylem3 26913 birthday 26914 amgmlem 26950 amgm 26951 musum 27151 dchrabs 27221 dchrisum0flblem1 27469 cusgrrusgr 29423 frgrreg 30232 tgoldbachgtda 34334 derangfmla 34841 erdszelem2 34843 rrndstprj2 37345 rrncmslem 37346 rrnequiv 37349 sticksstones21 41679 sticksstones22 41680 isnumbasgrplem3 42578 fzisoeu 44729 fourierdlem54 45595 fourierdlem103 45644 fourierdlem104 45645 qndenserrnbllem 45729 ovnhoilem1 46036 hoiqssbllem1 46057 hoiqssbllem2 46058 hoiqssbllem3 46059 vonsn 46126 amgmlemALT 48332 |
Copyright terms: Public domain | W3C validator |