MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnncl Structured version   Visualization version   GIF version

Theorem hashnncl 14401
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
hashnncl (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))

Proof of Theorem hashnncl
StepHypRef Expression
1 nnne0 12297 . . 3 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0)
2 hashcl 14391 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3 elnn0 12525 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
42, 3sylib 218 . . . . 5 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
54ord 864 . . . 4 (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
65necon1ad 2954 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
71, 6impbid2 226 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0))
8 hasheq0 14398 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
98necon3bid 2982 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
107, 9bitrd 279 1 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1536  wcel 2105  wne 2937  c0 4338  cfv 6562  Fincfn 8983  0cc0 11152  cn 12263  0cn0 12523  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  hashge1  14424  lennncl  14568  lswlgt0cl  14603  wrdind  14756  wrd2ind  14757  incexc  15869  incexc2  15870  ramub1  17061  gsumwmhm  18870  psgnunilem5  19526  psgnunilem4  19529  gexcl2  19621  sylow1lem3  19632  sylow1lem5  19634  pgpfi  19637  pgpfi2  19638  sylow2alem2  19650  sylow2blem3  19654  slwhash  19656  fislw  19657  sylow3lem3  19661  sylow3lem4  19662  efgsres  19770  efgredlem  19779  lt6abl  19927  ablfacrp2  20101  ablfac1lem  20102  ablfac1b  20104  ablfac1c  20105  ablfac1eu  20107  pgpfac1lem2  20109  pgpfac1lem3a  20110  pgpfaclem2  20116  ablfaclem3  20121  lebnumlem3  25008  birthdaylem3  27010  birthday  27011  amgmlem  27047  amgm  27048  musum  27248  dchrabs  27318  dchrisum0flblem1  27566  cusgrrusgr  29613  frgrreg  30422  tgoldbachgtda  34654  derangfmla  35174  erdszelem2  35176  rrndstprj2  37817  rrncmslem  37818  rrnequiv  37821  sticksstones21  42148  sticksstones22  42149  isnumbasgrplem3  43093  fzisoeu  45250  fourierdlem54  46115  fourierdlem103  46164  fourierdlem104  46165  qndenserrnbllem  46249  ovnhoilem1  46556  hoiqssbllem1  46577  hoiqssbllem2  46578  hoiqssbllem3  46579  vonsn  46646  amgmlemALT  49033
  Copyright terms: Public domain W3C validator