| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version | ||
| Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 12154 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
| 2 | hashcl 14258 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 3 | elnn0 12378 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
| 5 | 4 | ord 864 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
| 6 | 5 | necon1ad 2945 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
| 7 | 1, 6 | impbid2 226 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
| 8 | hasheq0 14265 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
| 9 | 8 | necon3bid 2972 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
| 10 | 7, 9 | bitrd 279 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 ‘cfv 6476 Fincfn 8864 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: hashge1 14291 lennncl 14436 lswlgt0cl 14471 wrdind 14624 wrd2ind 14625 incexc 15739 incexc2 15740 ramub1 16935 gsumwmhm 18748 psgnunilem5 19401 psgnunilem4 19404 gexcl2 19496 sylow1lem3 19507 sylow1lem5 19509 pgpfi 19512 pgpfi2 19513 sylow2alem2 19525 sylow2blem3 19529 slwhash 19531 fislw 19532 sylow3lem3 19536 sylow3lem4 19537 efgsres 19645 efgredlem 19654 lt6abl 19802 ablfacrp2 19976 ablfac1lem 19977 ablfac1b 19979 ablfac1c 19980 ablfac1eu 19982 pgpfac1lem2 19984 pgpfac1lem3a 19985 pgpfaclem2 19991 ablfaclem3 19996 lebnumlem3 24884 birthdaylem3 26885 birthday 26886 amgmlem 26922 amgm 26923 musum 27123 dchrabs 27193 dchrisum0flblem1 27441 cusgrrusgr 29555 frgrreg 30366 tgoldbachgtda 34666 derangfmla 35226 erdszelem2 35228 rrndstprj2 37871 rrncmslem 37872 rrnequiv 37875 sticksstones21 42200 sticksstones22 42201 isnumbasgrplem3 43138 fzisoeu 45341 fourierdlem54 46198 fourierdlem103 46247 fourierdlem104 46248 qndenserrnbllem 46332 ovnhoilem1 46639 hoiqssbllem1 46660 hoiqssbllem2 46661 hoiqssbllem3 46662 vonsn 46729 amgmlemALT 49835 |
| Copyright terms: Public domain | W3C validator |