MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnncl Structured version   Visualization version   GIF version

Theorem hashnncl 14367
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
hashnncl (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))

Proof of Theorem hashnncl
StepHypRef Expression
1 nnne0 12286 . . 3 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0)
2 hashcl 14357 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3 elnn0 12514 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
42, 3sylib 217 . . . . 5 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
54ord 862 . . . 4 (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
65necon1ad 2954 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
71, 6impbid2 225 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0))
8 hasheq0 14364 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
98necon3bid 2982 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
107, 9bitrd 278 1 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1533  wcel 2098  wne 2937  c0 4326  cfv 6553  Fincfn 8972  0cc0 11148  cn 12252  0cn0 12512  chash 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-hash 14332
This theorem is referenced by:  hashge1  14390  lennncl  14526  lswlgt0cl  14561  wrdind  14714  wrd2ind  14715  incexc  15825  incexc2  15826  ramub1  17006  gsumwmhm  18811  psgnunilem5  19463  psgnunilem4  19466  gexcl2  19558  sylow1lem3  19569  sylow1lem5  19571  pgpfi  19574  pgpfi2  19575  sylow2alem2  19587  sylow2blem3  19591  slwhash  19593  fislw  19594  sylow3lem3  19598  sylow3lem4  19599  efgsres  19707  efgredlem  19716  lt6abl  19864  ablfacrp2  20038  ablfac1lem  20039  ablfac1b  20041  ablfac1c  20042  ablfac1eu  20044  pgpfac1lem2  20046  pgpfac1lem3a  20047  pgpfaclem2  20053  ablfaclem3  20058  lebnumlem3  24917  birthdaylem3  26913  birthday  26914  amgmlem  26950  amgm  26951  musum  27151  dchrabs  27221  dchrisum0flblem1  27469  cusgrrusgr  29423  frgrreg  30232  tgoldbachgtda  34334  derangfmla  34841  erdszelem2  34843  rrndstprj2  37345  rrncmslem  37346  rrnequiv  37349  sticksstones21  41679  sticksstones22  41680  isnumbasgrplem3  42578  fzisoeu  44729  fourierdlem54  45595  fourierdlem103  45644  fourierdlem104  45645  qndenserrnbllem  45729  ovnhoilem1  46036  hoiqssbllem1  46057  hoiqssbllem2  46058  hoiqssbllem3  46059  vonsn  46126  amgmlemALT  48332
  Copyright terms: Public domain W3C validator