![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 11255 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
2 | hashcl 13349 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | elnn0 11496 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
4 | 2, 3 | sylib 208 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
5 | 4 | ord 851 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
6 | 5 | necon1ad 2960 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
7 | 1, 6 | impbid2 216 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
8 | hasheq0 13356 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
9 | 8 | necon3bid 2987 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
10 | 7, 9 | bitrd 268 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 834 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 ‘cfv 6031 Fincfn 8109 0cc0 10138 ℕcn 11222 ℕ0cn0 11494 ♯chash 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 |
This theorem is referenced by: hashge1 13380 lennncl 13521 lswlgt0cl 13553 wrdind 13685 wrd2ind 13686 incexc 14776 incexc2 14777 ramub1 15939 gsumwmhm 17590 psgnunilem5 18121 psgnunilem4 18124 gexcl2 18211 sylow1lem3 18222 sylow1lem5 18224 pgpfi 18227 pgpfi2 18228 sylow2alem2 18240 sylow2blem3 18244 slwhash 18246 fislw 18247 sylow3lem3 18251 sylow3lem4 18252 efgsp1 18357 efgsres 18358 efgredlem 18367 lt6abl 18503 ablfacrp2 18674 ablfac1lem 18675 ablfac1b 18677 ablfac1c 18678 ablfac1eu 18680 pgpfac1lem2 18682 pgpfac1lem3a 18683 pgpfaclem2 18689 ablfaclem3 18694 lebnumlem3 22982 birthdaylem3 24901 birthday 24902 amgmlem 24937 amgm 24938 musum 25138 dchrabs 25206 dchrisum0flblem1 25418 cusgrrusgr 26712 wlkiswwlksupgr2 27011 frgrreg 27593 tgoldbachgtda 31079 derangfmla 31510 erdszelem2 31512 rrndstprj2 33962 rrncmslem 33963 rrnequiv 33966 isnumbasgrplem3 38201 fzisoeu 40031 fourierdlem54 40894 fourierdlem103 40943 fourierdlem104 40944 qndenserrnbllem 41031 ovnhoilem1 41335 hoiqssbllem1 41356 hoiqssbllem2 41357 hoiqssbllem3 41358 vonsn 41425 amgmlemALT 43080 |
Copyright terms: Public domain | W3C validator |