| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version | ||
| Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 12279 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
| 2 | hashcl 14379 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 3 | elnn0 12508 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
| 5 | 4 | ord 864 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
| 6 | 5 | necon1ad 2950 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
| 7 | 1, 6 | impbid2 226 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
| 8 | hasheq0 14386 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
| 9 | 8 | necon3bid 2977 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
| 10 | 7, 9 | bitrd 279 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ‘cfv 6536 Fincfn 8964 0cc0 11134 ℕcn 12245 ℕ0cn0 12506 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: hashge1 14412 lennncl 14557 lswlgt0cl 14592 wrdind 14745 wrd2ind 14746 incexc 15858 incexc2 15859 ramub1 17053 gsumwmhm 18828 psgnunilem5 19480 psgnunilem4 19483 gexcl2 19575 sylow1lem3 19586 sylow1lem5 19588 pgpfi 19591 pgpfi2 19592 sylow2alem2 19604 sylow2blem3 19608 slwhash 19610 fislw 19611 sylow3lem3 19615 sylow3lem4 19616 efgsres 19724 efgredlem 19733 lt6abl 19881 ablfacrp2 20055 ablfac1lem 20056 ablfac1b 20058 ablfac1c 20059 ablfac1eu 20061 pgpfac1lem2 20063 pgpfac1lem3a 20064 pgpfaclem2 20070 ablfaclem3 20075 lebnumlem3 24918 birthdaylem3 26920 birthday 26921 amgmlem 26957 amgm 26958 musum 27158 dchrabs 27228 dchrisum0flblem1 27476 cusgrrusgr 29566 frgrreg 30380 tgoldbachgtda 34698 derangfmla 35217 erdszelem2 35219 rrndstprj2 37860 rrncmslem 37861 rrnequiv 37864 sticksstones21 42185 sticksstones22 42186 isnumbasgrplem3 43096 fzisoeu 45296 fourierdlem54 46156 fourierdlem103 46205 fourierdlem104 46206 qndenserrnbllem 46290 ovnhoilem1 46597 hoiqssbllem1 46618 hoiqssbllem2 46619 hoiqssbllem3 46620 vonsn 46687 amgmlemALT 49634 |
| Copyright terms: Public domain | W3C validator |