![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 12262 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
2 | hashcl 14333 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | elnn0 12490 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
5 | 4 | ord 863 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
6 | 5 | necon1ad 2952 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
7 | 1, 6 | impbid2 225 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
8 | hasheq0 14340 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
9 | 8 | necon3bid 2980 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
10 | 7, 9 | bitrd 279 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∅c0 4318 ‘cfv 6542 Fincfn 8953 0cc0 11124 ℕcn 12228 ℕ0cn0 12488 ♯chash 14307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-hash 14308 |
This theorem is referenced by: hashge1 14366 lennncl 14502 lswlgt0cl 14537 wrdind 14690 wrd2ind 14691 incexc 15801 incexc2 15802 ramub1 16982 gsumwmhm 18782 psgnunilem5 19433 psgnunilem4 19436 gexcl2 19528 sylow1lem3 19539 sylow1lem5 19541 pgpfi 19544 pgpfi2 19545 sylow2alem2 19557 sylow2blem3 19561 slwhash 19563 fislw 19564 sylow3lem3 19568 sylow3lem4 19569 efgsres 19677 efgredlem 19686 lt6abl 19834 ablfacrp2 20008 ablfac1lem 20009 ablfac1b 20011 ablfac1c 20012 ablfac1eu 20014 pgpfac1lem2 20016 pgpfac1lem3a 20017 pgpfaclem2 20023 ablfaclem3 20028 lebnumlem3 24863 birthdaylem3 26859 birthday 26860 amgmlem 26896 amgm 26897 musum 27097 dchrabs 27167 dchrisum0flblem1 27415 cusgrrusgr 29369 frgrreg 30178 tgoldbachgtda 34216 derangfmla 34723 erdszelem2 34725 rrndstprj2 37226 rrncmslem 37227 rrnequiv 37230 sticksstones21 41558 sticksstones22 41559 isnumbasgrplem3 42441 fzisoeu 44595 fourierdlem54 45461 fourierdlem103 45510 fourierdlem104 45511 qndenserrnbllem 45595 ovnhoilem1 45902 hoiqssbllem1 45923 hoiqssbllem2 45924 hoiqssbllem3 45925 vonsn 45992 amgmlemALT 48149 |
Copyright terms: Public domain | W3C validator |