MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnncl Structured version   Visualization version   GIF version

Theorem hashnncl 14292
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
hashnncl (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))

Proof of Theorem hashnncl
StepHypRef Expression
1 nnne0 12181 . . 3 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0)
2 hashcl 14282 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3 elnn0 12405 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
42, 3sylib 218 . . . . 5 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
54ord 864 . . . 4 (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
65necon1ad 2942 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
71, 6impbid2 226 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0))
8 hasheq0 14289 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
98necon3bid 2969 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
107, 9bitrd 279 1 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2925  c0 4286  cfv 6486  Fincfn 8879  0cc0 11028  cn 12147  0cn0 12403  chash 14256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257
This theorem is referenced by:  hashge1  14315  lennncl  14460  lswlgt0cl  14495  wrdind  14647  wrd2ind  14648  incexc  15763  incexc2  15764  ramub1  16959  gsumwmhm  18738  psgnunilem5  19392  psgnunilem4  19395  gexcl2  19487  sylow1lem3  19498  sylow1lem5  19500  pgpfi  19503  pgpfi2  19504  sylow2alem2  19516  sylow2blem3  19520  slwhash  19522  fislw  19523  sylow3lem3  19527  sylow3lem4  19528  efgsres  19636  efgredlem  19645  lt6abl  19793  ablfacrp2  19967  ablfac1lem  19968  ablfac1b  19970  ablfac1c  19971  ablfac1eu  19973  pgpfac1lem2  19975  pgpfac1lem3a  19976  pgpfaclem2  19982  ablfaclem3  19987  lebnumlem3  24879  birthdaylem3  26880  birthday  26881  amgmlem  26917  amgm  26918  musum  27118  dchrabs  27188  dchrisum0flblem1  27436  cusgrrusgr  29546  frgrreg  30357  tgoldbachgtda  34648  derangfmla  35182  erdszelem2  35184  rrndstprj2  37830  rrncmslem  37831  rrnequiv  37834  sticksstones21  42160  sticksstones22  42161  isnumbasgrplem3  43098  fzisoeu  45302  fourierdlem54  46161  fourierdlem103  46210  fourierdlem104  46211  qndenserrnbllem  46295  ovnhoilem1  46602  hoiqssbllem1  46623  hoiqssbllem2  46624  hoiqssbllem3  46625  vonsn  46692  amgmlemALT  49808
  Copyright terms: Public domain W3C validator