Proof of Theorem basellem2
Step | Hyp | Ref
| Expression |
1 | | basel.p |
. . 3
⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) |
2 | | ssidd 3843 |
. . . 4
⊢ (𝑀 ∈ ℕ → ℂ
⊆ ℂ) |
3 | | nnnn0 11650 |
. . . 4
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
4 | | elfznn0 12751 |
. . . . . . 7
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
5 | | oveq2 6930 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗)) |
6 | 5 | oveq2d 6938 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗))) |
7 | | oveq2 6930 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑀 − 𝑛) = (𝑀 − 𝑗)) |
8 | 7 | oveq2d 6938 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (-1↑(𝑀 − 𝑛)) = (-1↑(𝑀 − 𝑗))) |
9 | 6, 8 | oveq12d 6940 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗)))) |
10 | | eqid 2778 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))) |
11 | | ovex 6954 |
. . . . . . . 8
⊢ ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) ∈ V |
12 | 9, 10, 11 | fvmpt 6542 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗)))) |
13 | 4, 12 | syl 17 |
. . . . . 6
⊢ (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗)))) |
14 | 13 | adantl 475 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗)))) |
15 | | basel.n |
. . . . . . . . . . . 12
⊢ 𝑁 = ((2 · 𝑀) + 1) |
16 | | 2nn 11448 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
17 | | nnmulcl 11399 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑀
∈ ℕ) → (2 · 𝑀) ∈ ℕ) |
18 | 16, 17 | mpan 680 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℕ) |
19 | 18 | peano2nnd 11393 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → ((2
· 𝑀) + 1) ∈
ℕ) |
20 | 15, 19 | syl5eqel 2863 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℕ) |
21 | 20 | nnnn0d 11702 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℕ0) |
22 | | 2z 11761 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
23 | | nn0z 11752 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
24 | | zmulcl 11778 |
. . . . . . . . . . 11
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℤ) → (2 · 𝑛) ∈ ℤ) |
25 | 22, 23, 24 | sylancr 581 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℤ) |
26 | | bccl 13427 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (2 · 𝑛) ∈
ℤ) → (𝑁C(2
· 𝑛)) ∈
ℕ0) |
27 | 21, 25, 26 | syl2an 589 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑁C(2 · 𝑛)) ∈
ℕ0) |
28 | 27 | nn0cnd 11704 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑁C(2 · 𝑛)) ∈
ℂ) |
29 | | nnz 11751 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
30 | | zsubcl 11771 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 − 𝑛) ∈ ℤ) |
31 | 29, 23, 30 | syl2an 589 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑀 − 𝑛) ∈
ℤ) |
32 | | neg1cn 11496 |
. . . . . . . . . 10
⊢ -1 ∈
ℂ |
33 | | neg1ne0 11498 |
. . . . . . . . . 10
⊢ -1 ≠
0 |
34 | | expclz 13203 |
. . . . . . . . . 10
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀 − 𝑛) ∈ ℤ) → (-1↑(𝑀 − 𝑛)) ∈ ℂ) |
35 | 32, 33, 34 | mp3an12 1524 |
. . . . . . . . 9
⊢ ((𝑀 − 𝑛) ∈ ℤ → (-1↑(𝑀 − 𝑛)) ∈ ℂ) |
36 | 31, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (-1↑(𝑀 −
𝑛)) ∈
ℂ) |
37 | 28, 36 | mulcld 10397 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))) ∈
ℂ) |
38 | 37 | fmpttd 6649 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛)))):ℕ0⟶ℂ) |
39 | | ffvelrn 6621 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛)))):ℕ0⟶ℂ ∧
𝑗 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ∈ ℂ) |
40 | 38, 4, 39 | syl2an 589 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ∈ ℂ) |
41 | 14, 40 | eqeltrrd 2860 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) ∈ ℂ) |
42 | 2, 3, 41 | elplyd 24395 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) ∈
(Poly‘ℂ)) |
43 | 1, 42 | syl5eqel 2863 |
. 2
⊢ (𝑀 ∈ ℕ → 𝑃 ∈
(Poly‘ℂ)) |
44 | | nnre 11382 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
45 | | nn0re 11652 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℝ) |
46 | | ltnle 10456 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑀)) |
47 | 44, 45, 46 | syl2an 589 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (𝑀 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑀)) |
48 | 12 | ad2antlr 717 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗)))) |
49 | 21 | ad2antrr 716 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑁 ∈
ℕ0) |
50 | | nn0z 11752 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℤ) |
51 | 50 | ad2antlr 717 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ) |
52 | | zmulcl 11778 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ 𝑗
∈ ℤ) → (2 · 𝑗) ∈ ℤ) |
53 | 22, 51, 52 | sylancr 581 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈
ℤ) |
54 | | ax-1cn 10330 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
55 | 54 | 2timesi 11520 |
. . . . . . . . . . . . . . . 16
⊢ (2
· 1) = (1 + 1) |
56 | 55 | oveq2i 6933 |
. . . . . . . . . . . . . . 15
⊢ ((2
· 𝑀) + (2 ·
1)) = ((2 · 𝑀) + (1
+ 1)) |
57 | | 2cnd 11453 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 2 ∈
ℂ) |
58 | | nncn 11383 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
59 | 58 | ad2antrr 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ) |
60 | 54 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 1 ∈
ℂ) |
61 | 57, 59, 60 | adddid 10401 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 ·
1))) |
62 | 15 | oveq1i 6932 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 + 1) = (((2 · 𝑀) + 1) + 1) |
63 | 18 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈
ℕ) |
64 | 63 | nncnd 11392 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈
ℂ) |
65 | 64, 60, 60 | addassd 10399 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1))) |
66 | 62, 65 | syl5eq 2826 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1))) |
67 | 56, 61, 66 | 3eqtr4a 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1)) |
68 | | zltp1le 11779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗)) |
69 | 29, 50, 68 | syl2an 589 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗)) |
70 | 69 | biimpa 470 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗) |
71 | 44 | ad2antrr 716 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ) |
72 | | peano2re 10549 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ) |
74 | 45 | ad2antlr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ) |
75 | | 2re 11449 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
76 | | 2pos 11485 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
2 |
77 | 75, 76 | pm3.2i 464 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
ℝ ∧ 0 < 2) |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧
0 < 2)) |
79 | | lemul2 11230 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗))) |
80 | 73, 74, 78, 79 | syl3anc 1439 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗))) |
81 | 70, 80 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗)) |
82 | 67, 81 | eqbrtrrd 4910 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗)) |
83 | 20 | nnzd 11833 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℤ) |
84 | 83 | ad2antrr 716 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ) |
85 | | zltp1le 11779 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ (2
· 𝑗) ∈ ℤ)
→ (𝑁 < (2 ·
𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗))) |
86 | 84, 53, 85 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗))) |
87 | 82, 86 | mpbird 249 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗)) |
88 | 87 | olcd 863 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) |
89 | | bcval4 13412 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (2 · 𝑗) ∈
ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0) |
90 | 49, 53, 88, 89 | syl3anc 1439 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0) |
91 | 90 | oveq1d 6937 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) = (0 · (-1↑(𝑀 − 𝑗)))) |
92 | | zsubcl 11771 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 − 𝑗) ∈ ℤ) |
93 | 29, 50, 92 | syl2an 589 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (𝑀 − 𝑗) ∈
ℤ) |
94 | | expclz 13203 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀 − 𝑗) ∈ ℤ) → (-1↑(𝑀 − 𝑗)) ∈ ℂ) |
95 | 32, 33, 94 | mp3an12 1524 |
. . . . . . . . . . . 12
⊢ ((𝑀 − 𝑗) ∈ ℤ → (-1↑(𝑀 − 𝑗)) ∈ ℂ) |
96 | 93, 95 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (-1↑(𝑀 −
𝑗)) ∈
ℂ) |
97 | 96 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (-1↑(𝑀 − 𝑗)) ∈ ℂ) |
98 | 97 | mul02d 10574 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → (0 ·
(-1↑(𝑀 − 𝑗))) = 0) |
99 | 48, 91, 98 | 3eqtrd 2818 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = 0) |
100 | 99 | ex 403 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = 0)) |
101 | 47, 100 | sylbird 252 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (¬ 𝑗 ≤ 𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) = 0)) |
102 | 101 | necon1ad 2986 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0)
→ (((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ≠ 0 → 𝑗 ≤ 𝑀)) |
103 | 102 | ralrimiva 3148 |
. . . 4
⊢ (𝑀 ∈ ℕ →
∀𝑗 ∈
ℕ0 (((𝑛
∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ≠ 0 → 𝑗 ≤ 𝑀)) |
104 | | plyco0 24385 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ (𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))):ℕ0⟶ℂ)
→ (((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))) “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0
(((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ≠ 0 → 𝑗 ≤ 𝑀))) |
105 | 3, 38, 104 | syl2anc 579 |
. . . 4
⊢ (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛)))) “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0
(((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) ≠ 0 → 𝑗 ≤ 𝑀))) |
106 | 103, 105 | mpbird 249 |
. . 3
⊢ (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛)))) “
(ℤ≥‘(𝑀 + 1))) = {0}) |
107 | 13 | oveq1d 6937 |
. . . . . . 7
⊢ (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) · (𝑡↑𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) |
108 | 107 | sumeq2i 14837 |
. . . . . 6
⊢
Σ𝑗 ∈
(0...𝑀)(((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))))‘𝑗) · (𝑡↑𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗)) |
109 | 108 | mpteq2i 4976 |
. . . . 5
⊢ (𝑡 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) · (𝑡↑𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) |
110 | 1, 109 | eqtr4i 2805 |
. . . 4
⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) · (𝑡↑𝑗))) |
111 | 110 | a1i 11 |
. . 3
⊢ (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑗) · (𝑡↑𝑗)))) |
112 | | oveq2 6930 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀)) |
113 | 112 | oveq2d 6938 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀))) |
114 | | oveq2 6930 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (𝑀 − 𝑛) = (𝑀 − 𝑀)) |
115 | 114 | oveq2d 6938 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (-1↑(𝑀 − 𝑛)) = (-1↑(𝑀 − 𝑀))) |
116 | 113, 115 | oveq12d 6940 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀 − 𝑀)))) |
117 | | ovex 6954 |
. . . . . . 7
⊢ ((𝑁C(2 · 𝑀)) · (-1↑(𝑀 − 𝑀))) ∈ V |
118 | 116, 10, 117 | fvmpt 6542 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀 − 𝑀)))) |
119 | 3, 118 | syl 17 |
. . . . 5
⊢ (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀 − 𝑀)))) |
120 | 58 | subidd 10722 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑀 − 𝑀) = 0) |
121 | 120 | oveq2d 6938 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ →
(-1↑(𝑀 − 𝑀)) =
(-1↑0)) |
122 | | exp0 13182 |
. . . . . . . 8
⊢ (-1
∈ ℂ → (-1↑0) = 1) |
123 | 32, 122 | ax-mp 5 |
. . . . . . 7
⊢
(-1↑0) = 1 |
124 | 121, 123 | syl6eq 2830 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(-1↑(𝑀 − 𝑀)) = 1) |
125 | 124 | oveq2d 6938 |
. . . . 5
⊢ (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀 − 𝑀))) = ((𝑁C(2 · 𝑀)) · 1)) |
126 | 18 | nnred 11391 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℝ) |
127 | 126 | lep1d 11309 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ≤ ((2
· 𝑀) +
1)) |
128 | 127, 15 | syl6breqr 4928 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ≤ 𝑁) |
129 | 18 | nnnn0d 11702 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℕ0) |
130 | | nn0uz 12028 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
131 | 129, 130 | syl6eleq 2869 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
(ℤ≥‘0)) |
132 | | elfz5 12651 |
. . . . . . . . . 10
⊢ (((2
· 𝑀) ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁)) |
133 | 131, 83, 132 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → ((2
· 𝑀) ∈
(0...𝑁) ↔ (2 ·
𝑀) ≤ 𝑁)) |
134 | 128, 133 | mpbird 249 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
(0...𝑁)) |
135 | | bccl2 13428 |
. . . . . . . 8
⊢ ((2
· 𝑀) ∈
(0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ) |
136 | 134, 135 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ) |
137 | 136 | nncnd 11392 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ) |
138 | 137 | mulid1d 10394 |
. . . . 5
⊢ (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀))) |
139 | 119, 125,
138 | 3eqtrd 2818 |
. . . 4
⊢ (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))))‘𝑀) = (𝑁C(2 · 𝑀))) |
140 | 136 | nnne0d 11425 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0) |
141 | 139, 140 | eqnetrd 3036 |
. . 3
⊢ (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))))‘𝑀) ≠ 0) |
142 | 43, 3, 38, 106, 111, 141 | dgreq 24437 |
. 2
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) = 𝑀) |
143 | 43, 3, 38, 106, 111 | coeeq 24420 |
. 2
⊢ (𝑀 ∈ ℕ →
(coeff‘𝑃) = (𝑛 ∈ ℕ0
↦ ((𝑁C(2 ·
𝑛)) ·
(-1↑(𝑀 − 𝑛))))) |
144 | 43, 142, 143 | 3jca 1119 |
1
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ)
∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))))) |