MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem2 Structured version   Visualization version   GIF version

Theorem basellem2 25964
Description: Lemma for basel 25972. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem2 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem2
StepHypRef Expression
1 basel.p . . 3 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
2 ssidd 3924 . . . 4 (𝑀 ∈ ℕ → ℂ ⊆ ℂ)
3 nnnn0 12097 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
4 elfznn0 13205 . . . . . . 7 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
5 oveq2 7221 . . . . . . . . . 10 (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗))
65oveq2d 7229 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗)))
7 oveq2 7221 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑀𝑛) = (𝑀𝑗))
87oveq2d 7229 . . . . . . . . 9 (𝑛 = 𝑗 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑗)))
96, 8oveq12d 7231 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
10 eqid 2737 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
11 ovex 7246 . . . . . . . 8 ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ V
129, 10, 11fvmpt 6818 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
134, 12syl 17 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
1413adantl 485 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
15 basel.n . . . . . . . . . . . 12 𝑁 = ((2 · 𝑀) + 1)
16 2nn 11903 . . . . . . . . . . . . . 14 2 ∈ ℕ
17 nnmulcl 11854 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
1816, 17mpan 690 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
1918peano2nnd 11847 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
2015, 19eqeltrid 2842 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2120nnnn0d 12150 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
22 2z 12209 . . . . . . . . . . 11 2 ∈ ℤ
23 nn0z 12200 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
24 zmulcl 12226 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
2522, 23, 24sylancr 590 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℤ)
26 bccl 13888 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑛) ∈ ℤ) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2721, 25, 26syl2an 599 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2827nn0cnd 12152 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℂ)
29 neg1cn 11944 . . . . . . . . 9 -1 ∈ ℂ
30 neg1ne0 11946 . . . . . . . . 9 -1 ≠ 0
31 nnz 12199 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
32 zsubcl 12219 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛) ∈ ℤ)
3331, 23, 32syl2an 599 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℤ)
34 expclz 13660 . . . . . . . . 9 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑛) ∈ ℤ) → (-1↑(𝑀𝑛)) ∈ ℂ)
3529, 30, 33, 34mp3an12i 1467 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑀𝑛)) ∈ ℂ)
3628, 35mulcld 10853 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) ∈ ℂ)
3736fmpttd 6932 . . . . . 6 (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ)
38 ffvelrn 6902 . . . . . 6 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
3937, 4, 38syl2an 599 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4014, 39eqeltrrd 2839 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℂ)
412, 3, 40elplyd 25096 . . 3 (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))) ∈ (Poly‘ℂ))
421, 41eqeltrid 2842 . 2 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
43 nnre 11837 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
44 nn0re 12099 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
45 ltnle 10912 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4643, 44, 45syl2an 599 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4712ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
4821ad2antrr 726 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℕ0)
49 nn0z 12200 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5049ad2antlr 727 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ)
51 zmulcl 12226 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℤ)
5222, 50, 51sylancr 590 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈ ℤ)
53 ax-1cn 10787 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
54532timesi 11968 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
5554oveq2i 7224 . . . . . . . . . . . . . . 15 ((2 · 𝑀) + (2 · 1)) = ((2 · 𝑀) + (1 + 1))
56 2cnd 11908 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 2 ∈ ℂ)
57 nncn 11838 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5857ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ)
5953a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 1 ∈ ℂ)
6056, 58, 59adddid 10857 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
6115oveq1i 7223 . . . . . . . . . . . . . . . 16 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
6218ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℕ)
6362nncnd 11846 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℂ)
6463, 59, 59addassd 10855 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
6561, 64syl5eq 2790 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
6655, 60, 653eqtr4a 2804 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1))
67 zltp1le 12227 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6831, 49, 67syl2an 599 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6968biimpa 480 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗)
7043ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ)
71 peano2re 11005 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ)
7344ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ)
74 2re 11904 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
75 2pos 11933 . . . . . . . . . . . . . . . . . 18 0 < 2
7674, 75pm3.2i 474 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11685 . . . . . . . . . . . . . . . 16 (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
7972, 73, 77, 78syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8069, 79mpbid 235 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗))
8166, 80eqbrtrrd 5077 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗))
8220nnzd 12281 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
8382ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ)
84 zltp1le 12227 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (2 · 𝑗) ∈ ℤ) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8583, 52, 84syl2anc 587 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8681, 85mpbird 260 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗))
8786olcd 874 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗)))
88 bcval4 13873 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0)
8948, 52, 87, 88syl3anc 1373 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0)
9089oveq1d 7228 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) = (0 · (-1↑(𝑀𝑗))))
91 zsubcl 12219 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀𝑗) ∈ ℤ)
9231, 49, 91syl2an 599 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀𝑗) ∈ ℤ)
93 expclz 13660 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑗) ∈ ℤ) → (-1↑(𝑀𝑗)) ∈ ℂ)
9429, 30, 92, 93mp3an12i 1467 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℂ)
9594adantr 484 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (-1↑(𝑀𝑗)) ∈ ℂ)
9695mul02d 11030 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (0 · (-1↑(𝑀𝑗))) = 0)
9747, 90, 963eqtrd 2781 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0)
9897ex 416 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
9946, 98sylbird 263 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
10099necon1ad 2957 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
101100ralrimiva 3105 . . . 4 (𝑀 ∈ ℕ → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
102 plyco0 25086 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
1033, 37, 102syl2anc 587 . . . 4 (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
104101, 103mpbird 260 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0})
10513oveq1d 7228 . . . . . . 7 (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
106105sumeq2i 15263 . . . . . 6 Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))
107106mpteq2i 5147 . . . . 5 (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
1081, 107eqtr4i 2768 . . . 4 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)))
109108a1i 11 . . 3 (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))))
110 oveq2 7221 . . . . . . . . 9 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
111110oveq2d 7229 . . . . . . . 8 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
112 oveq2 7221 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
113112oveq2d 7229 . . . . . . . 8 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
114111, 113oveq12d 7231 . . . . . . 7 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
115 ovex 7246 . . . . . . 7 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
116114, 10, 115fvmpt 6818 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
1173, 116syl 17 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
11857subidd 11177 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
119118oveq2d 7229 . . . . . . 7 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
120 exp0 13639 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
12129, 120ax-mp 5 . . . . . . 7 (-1↑0) = 1
122119, 121eqtrdi 2794 . . . . . 6 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
123122oveq2d 7229 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
12418nnred 11845 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
125124lep1d 11763 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
126125, 15breqtrrdi 5095 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
12718nnnn0d 12150 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ0)
128 nn0uz 12476 . . . . . . . . . . 11 0 = (ℤ‘0)
129127, 128eleqtrdi 2848 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘0))
130 elfz5 13104 . . . . . . . . . 10 (((2 · 𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
131129, 82, 130syl2anc 587 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
132126, 131mpbird 260 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
133 bccl2 13889 . . . . . . . 8 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
134132, 133syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
135134nncnd 11846 . . . . . 6 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
136135mulid1d 10850 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
137117, 123, 1363eqtrd 2781 . . . 4 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = (𝑁C(2 · 𝑀)))
138134nnne0d 11880 . . . 4 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
139137, 138eqnetrd 3008 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) ≠ 0)
14042, 3, 37, 104, 109, 139dgreq 25138 . 2 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
14142, 3, 37, 104, 109coeeq 25121 . 2 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
14242, 140, 1413jca 1130 1 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  {csn 4541   class class class wbr 5053  cmpt 5135  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  -cneg 11063  cn 11830  2c2 11885  0cn0 12090  cz 12176  cuz 12438  ...cfz 13095  cexp 13635  Ccbc 13868  Σcsu 15249  Polycply 25078  coeffccoe 25080  degcdgr 25081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-0p 24567  df-ply 25082  df-coe 25084  df-dgr 25085
This theorem is referenced by:  basellem4  25966  basellem5  25967
  Copyright terms: Public domain W3C validator