Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem2 Structured version   Visualization version   GIF version

Theorem basellem2 25708
 Description: Lemma for basel 25716. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem2 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem2
StepHypRef Expression
1 basel.p . . 3 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
2 ssidd 3939 . . . 4 (𝑀 ∈ ℕ → ℂ ⊆ ℂ)
3 nnnn0 11907 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
4 elfznn0 13012 . . . . . . 7 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
5 oveq2 7150 . . . . . . . . . 10 (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗))
65oveq2d 7158 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗)))
7 oveq2 7150 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑀𝑛) = (𝑀𝑗))
87oveq2d 7158 . . . . . . . . 9 (𝑛 = 𝑗 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑗)))
96, 8oveq12d 7160 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
10 eqid 2798 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
11 ovex 7175 . . . . . . . 8 ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ V
129, 10, 11fvmpt 6752 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
134, 12syl 17 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
1413adantl 485 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
15 basel.n . . . . . . . . . . . 12 𝑁 = ((2 · 𝑀) + 1)
16 2nn 11713 . . . . . . . . . . . . . 14 2 ∈ ℕ
17 nnmulcl 11664 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
1816, 17mpan 689 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
1918peano2nnd 11657 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
2015, 19eqeltrid 2894 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2120nnnn0d 11960 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
22 2z 12019 . . . . . . . . . . 11 2 ∈ ℤ
23 nn0z 12010 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
24 zmulcl 12036 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
2522, 23, 24sylancr 590 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℤ)
26 bccl 13695 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑛) ∈ ℤ) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2721, 25, 26syl2an 598 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2827nn0cnd 11962 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℂ)
29 neg1cn 11754 . . . . . . . . 9 -1 ∈ ℂ
30 neg1ne0 11756 . . . . . . . . 9 -1 ≠ 0
31 nnz 12009 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
32 zsubcl 12029 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛) ∈ ℤ)
3331, 23, 32syl2an 598 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℤ)
34 expclz 13467 . . . . . . . . 9 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑛) ∈ ℤ) → (-1↑(𝑀𝑛)) ∈ ℂ)
3529, 30, 33, 34mp3an12i 1462 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑀𝑛)) ∈ ℂ)
3628, 35mulcld 10665 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) ∈ ℂ)
3736fmpttd 6863 . . . . . 6 (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ)
38 ffvelrn 6833 . . . . . 6 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
3937, 4, 38syl2an 598 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4014, 39eqeltrrd 2891 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℂ)
412, 3, 40elplyd 24840 . . 3 (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))) ∈ (Poly‘ℂ))
421, 41eqeltrid 2894 . 2 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
43 nnre 11647 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
44 nn0re 11909 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
45 ltnle 10724 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4643, 44, 45syl2an 598 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4712ad2antlr 726 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
4821ad2antrr 725 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℕ0)
49 nn0z 12010 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5049ad2antlr 726 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ)
51 zmulcl 12036 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℤ)
5222, 50, 51sylancr 590 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈ ℤ)
53 ax-1cn 10599 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
54532timesi 11778 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
5554oveq2i 7153 . . . . . . . . . . . . . . 15 ((2 · 𝑀) + (2 · 1)) = ((2 · 𝑀) + (1 + 1))
56 2cnd 11718 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 2 ∈ ℂ)
57 nncn 11648 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5857ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ)
5953a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 1 ∈ ℂ)
6056, 58, 59adddid 10669 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
6115oveq1i 7152 . . . . . . . . . . . . . . . 16 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
6218ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℕ)
6362nncnd 11656 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℂ)
6463, 59, 59addassd 10667 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
6561, 64syl5eq 2845 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
6655, 60, 653eqtr4a 2859 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1))
67 zltp1le 12037 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6831, 49, 67syl2an 598 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6968biimpa 480 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗)
7043ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ)
71 peano2re 10817 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ)
7344ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ)
74 2re 11714 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
75 2pos 11743 . . . . . . . . . . . . . . . . . 18 0 < 2
7674, 75pm3.2i 474 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11497 . . . . . . . . . . . . . . . 16 (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
7972, 73, 77, 78syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8069, 79mpbid 235 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗))
8166, 80eqbrtrrd 5057 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗))
8220nnzd 12091 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
8382ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ)
84 zltp1le 12037 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (2 · 𝑗) ∈ ℤ) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8583, 52, 84syl2anc 587 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8681, 85mpbird 260 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗))
8786olcd 871 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗)))
88 bcval4 13680 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0)
8948, 52, 87, 88syl3anc 1368 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0)
9089oveq1d 7157 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) = (0 · (-1↑(𝑀𝑗))))
91 zsubcl 12029 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀𝑗) ∈ ℤ)
9231, 49, 91syl2an 598 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀𝑗) ∈ ℤ)
93 expclz 13467 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑗) ∈ ℤ) → (-1↑(𝑀𝑗)) ∈ ℂ)
9429, 30, 92, 93mp3an12i 1462 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℂ)
9594adantr 484 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (-1↑(𝑀𝑗)) ∈ ℂ)
9695mul02d 10842 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (0 · (-1↑(𝑀𝑗))) = 0)
9747, 90, 963eqtrd 2837 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0)
9897ex 416 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
9946, 98sylbird 263 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
10099necon1ad 3004 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
101100ralrimiva 3149 . . . 4 (𝑀 ∈ ℕ → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
102 plyco0 24830 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
1033, 37, 102syl2anc 587 . . . 4 (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
104101, 103mpbird 260 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0})
10513oveq1d 7157 . . . . . . 7 (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
106105sumeq2i 15065 . . . . . 6 Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))
107106mpteq2i 5125 . . . . 5 (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
1081, 107eqtr4i 2824 . . . 4 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)))
109108a1i 11 . . 3 (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))))
110 oveq2 7150 . . . . . . . . 9 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
111110oveq2d 7158 . . . . . . . 8 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
112 oveq2 7150 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
113112oveq2d 7158 . . . . . . . 8 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
114111, 113oveq12d 7160 . . . . . . 7 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
115 ovex 7175 . . . . . . 7 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
116114, 10, 115fvmpt 6752 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
1173, 116syl 17 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
11857subidd 10989 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
119118oveq2d 7158 . . . . . . 7 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
120 exp0 13446 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
12129, 120ax-mp 5 . . . . . . 7 (-1↑0) = 1
122119, 121eqtrdi 2849 . . . . . 6 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
123122oveq2d 7158 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
12418nnred 11655 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
125124lep1d 11575 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
126125, 15breqtrrdi 5075 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
12718nnnn0d 11960 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ0)
128 nn0uz 12285 . . . . . . . . . . 11 0 = (ℤ‘0)
129127, 128eleqtrdi 2900 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘0))
130 elfz5 12911 . . . . . . . . . 10 (((2 · 𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
131129, 82, 130syl2anc 587 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
132126, 131mpbird 260 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
133 bccl2 13696 . . . . . . . 8 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
134132, 133syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
135134nncnd 11656 . . . . . 6 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
136135mulid1d 10662 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
137117, 123, 1363eqtrd 2837 . . . 4 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = (𝑁C(2 · 𝑀)))
138134nnne0d 11690 . . . 4 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
139137, 138eqnetrd 3054 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) ≠ 0)
14042, 3, 37, 104, 109, 139dgreq 24882 . 2 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
14142, 3, 37, 104, 109coeeq 24865 . 2 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
14242, 140, 1413jca 1125 1 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  {csn 4527   class class class wbr 5033   ↦ cmpt 5113   “ cima 5525  ⟶wf 6325  ‘cfv 6329  (class class class)co 7142  ℂcc 10539  ℝcr 10540  0cc0 10541  1c1 10542   + caddc 10544   · cmul 10546   < clt 10679   ≤ cle 10680   − cmin 10874  -cneg 10875  ℕcn 11640  2c2 11695  ℕ0cn0 11900  ℤcz 11986  ℤ≥cuz 12248  ...cfz 12902  ↑cexp 13442  Ccbc 13675  Σcsu 15051  Polycply 24822  coeffccoe 24824  degcdgr 24825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-inf2 9103  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618  ax-pre-sup 10619  ax-addf 10620 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7397  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-pm 8407  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-div 11302  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11987  df-uz 12249  df-rp 12395  df-fz 12903  df-fzo 13046  df-fl 13174  df-seq 13382  df-exp 13443  df-fac 13647  df-bc 13676  df-hash 13704  df-cj 14467  df-re 14468  df-im 14469  df-sqrt 14603  df-abs 14604  df-clim 14854  df-rlim 14855  df-sum 15052  df-0p 24312  df-ply 24826  df-coe 24828  df-dgr 24829 This theorem is referenced by:  basellem4  25710  basellem5  25711
 Copyright terms: Public domain W3C validator