MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem2 Structured version   Visualization version   GIF version

Theorem basellem2 27017
Description: Lemma for basel 27025. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem2 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem2
StepHypRef Expression
1 basel.p . . 3 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
2 ssidd 3958 . . . 4 (𝑀 ∈ ℕ → ℂ ⊆ ℂ)
3 nnnn0 12385 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
4 elfznn0 13517 . . . . . . 7 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
5 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗))
65oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗)))
7 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑀𝑛) = (𝑀𝑗))
87oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑗 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑗)))
96, 8oveq12d 7364 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
10 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
11 ovex 7379 . . . . . . . 8 ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ V
129, 10, 11fvmpt 6929 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
134, 12syl 17 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
1413adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
15 basel.n . . . . . . . . . . . 12 𝑁 = ((2 · 𝑀) + 1)
16 2nn 12195 . . . . . . . . . . . . . 14 2 ∈ ℕ
17 nnmulcl 12146 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
1816, 17mpan 690 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
1918peano2nnd 12139 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
2015, 19eqeltrid 2835 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2120nnnn0d 12439 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
22 2z 12501 . . . . . . . . . . 11 2 ∈ ℤ
23 nn0z 12490 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
24 zmulcl 12518 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
2522, 23, 24sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℤ)
26 bccl 14226 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑛) ∈ ℤ) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2721, 25, 26syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2827nn0cnd 12441 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℂ)
29 neg1cn 12107 . . . . . . . . 9 -1 ∈ ℂ
30 neg1ne0 12109 . . . . . . . . 9 -1 ≠ 0
31 nnz 12486 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
32 zsubcl 12511 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛) ∈ ℤ)
3331, 23, 32syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℤ)
34 expclz 13988 . . . . . . . . 9 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑛) ∈ ℤ) → (-1↑(𝑀𝑛)) ∈ ℂ)
3529, 30, 33, 34mp3an12i 1467 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑀𝑛)) ∈ ℂ)
3628, 35mulcld 11129 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) ∈ ℂ)
3736fmpttd 7048 . . . . . 6 (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ)
38 ffvelcdm 7014 . . . . . 6 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
3937, 4, 38syl2an 596 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4014, 39eqeltrrd 2832 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℂ)
412, 3, 40elplyd 26132 . . 3 (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))) ∈ (Poly‘ℂ))
421, 41eqeltrid 2835 . 2 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
43 nnre 12129 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
44 nn0re 12387 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
45 ltnle 11189 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4643, 44, 45syl2an 596 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4712ad2antlr 727 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
4821ad2antrr 726 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℕ0)
49 nn0z 12490 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5049ad2antlr 727 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ)
51 zmulcl 12518 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℤ)
5222, 50, 51sylancr 587 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈ ℤ)
53 ax-1cn 11061 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
54532timesi 12255 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
5554oveq2i 7357 . . . . . . . . . . . . . . 15 ((2 · 𝑀) + (2 · 1)) = ((2 · 𝑀) + (1 + 1))
56 2cnd 12200 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 2 ∈ ℂ)
57 nncn 12130 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5857ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ)
5953a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 1 ∈ ℂ)
6056, 58, 59adddid 11133 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
6115oveq1i 7356 . . . . . . . . . . . . . . . 16 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
6218ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℕ)
6362nncnd 12138 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℂ)
6463, 59, 59addassd 11131 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
6561, 64eqtrid 2778 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
6655, 60, 653eqtr4a 2792 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1))
67 zltp1le 12519 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6831, 49, 67syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6968biimpa 476 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗)
7043ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ)
71 peano2re 11283 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ)
7344ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ)
74 2re 12196 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
75 2pos 12225 . . . . . . . . . . . . . . . . . 18 0 < 2
7674, 75pm3.2i 470 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11971 . . . . . . . . . . . . . . . 16 (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
7972, 73, 77, 78syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8069, 79mpbid 232 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗))
8166, 80eqbrtrrd 5115 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗))
8220nnzd 12492 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
8382ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ)
84 zltp1le 12519 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (2 · 𝑗) ∈ ℤ) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8583, 52, 84syl2anc 584 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8681, 85mpbird 257 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗))
8786olcd 874 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗)))
88 bcval4 14211 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0)
8948, 52, 87, 88syl3anc 1373 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0)
9089oveq1d 7361 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) = (0 · (-1↑(𝑀𝑗))))
91 zsubcl 12511 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀𝑗) ∈ ℤ)
9231, 49, 91syl2an 596 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀𝑗) ∈ ℤ)
93 expclz 13988 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑗) ∈ ℤ) → (-1↑(𝑀𝑗)) ∈ ℂ)
9429, 30, 92, 93mp3an12i 1467 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℂ)
9594adantr 480 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (-1↑(𝑀𝑗)) ∈ ℂ)
9695mul02d 11308 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (0 · (-1↑(𝑀𝑗))) = 0)
9747, 90, 963eqtrd 2770 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0)
9897ex 412 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
9946, 98sylbird 260 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
10099necon1ad 2945 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
101100ralrimiva 3124 . . . 4 (𝑀 ∈ ℕ → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
102 plyco0 26122 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
1033, 37, 102syl2anc 584 . . . 4 (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
104101, 103mpbird 257 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0})
10513oveq1d 7361 . . . . . . 7 (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
106105sumeq2i 15602 . . . . . 6 Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))
107106mpteq2i 5187 . . . . 5 (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
1081, 107eqtr4i 2757 . . . 4 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)))
109108a1i 11 . . 3 (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))))
110 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
111110oveq2d 7362 . . . . . . . 8 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
112 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
113112oveq2d 7362 . . . . . . . 8 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
114111, 113oveq12d 7364 . . . . . . 7 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
115 ovex 7379 . . . . . . 7 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
116114, 10, 115fvmpt 6929 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
1173, 116syl 17 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
11857subidd 11457 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
119118oveq2d 7362 . . . . . . 7 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
120 exp0 13969 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
12129, 120ax-mp 5 . . . . . . 7 (-1↑0) = 1
122119, 121eqtrdi 2782 . . . . . 6 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
123122oveq2d 7362 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
12418nnred 12137 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
125124lep1d 12050 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
126125, 15breqtrrdi 5133 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
12718nnnn0d 12439 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ0)
128 nn0uz 12771 . . . . . . . . . . 11 0 = (ℤ‘0)
129127, 128eleqtrdi 2841 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘0))
130 elfz5 13413 . . . . . . . . . 10 (((2 · 𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
131129, 82, 130syl2anc 584 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
132126, 131mpbird 257 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
133 bccl2 14227 . . . . . . . 8 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
134132, 133syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
135134nncnd 12138 . . . . . 6 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
136135mulridd 11126 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
137117, 123, 1363eqtrd 2770 . . . 4 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = (𝑁C(2 · 𝑀)))
138134nnne0d 12172 . . . 4 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
139137, 138eqnetrd 2995 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) ≠ 0)
14042, 3, 37, 104, 109, 139dgreq 26174 . 2 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
14142, 3, 37, 104, 109coeeq 26157 . 2 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
14242, 140, 1413jca 1128 1 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {csn 4576   class class class wbr 5091  cmpt 5172  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  -cneg 11342  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729  ...cfz 13404  cexp 13965  Ccbc 14206  Σcsu 15590  Polycply 26114  coeffccoe 26116  degcdgr 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-0p 25596  df-ply 26118  df-coe 26120  df-dgr 26121
This theorem is referenced by:  basellem4  27019  basellem5  27020
  Copyright terms: Public domain W3C validator