MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem2 Structured version   Visualization version   GIF version

Theorem basellem2 25659
Description: Lemma for basel 25667. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem2 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem2
StepHypRef Expression
1 basel.p . . 3 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
2 ssidd 3990 . . . 4 (𝑀 ∈ ℕ → ℂ ⊆ ℂ)
3 nnnn0 11905 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
4 elfznn0 13001 . . . . . . 7 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
5 oveq2 7164 . . . . . . . . . 10 (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗))
65oveq2d 7172 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗)))
7 oveq2 7164 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑀𝑛) = (𝑀𝑗))
87oveq2d 7172 . . . . . . . . 9 (𝑛 = 𝑗 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑗)))
96, 8oveq12d 7174 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
10 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
11 ovex 7189 . . . . . . . 8 ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ V
129, 10, 11fvmpt 6768 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
134, 12syl 17 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
1413adantl 484 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
15 basel.n . . . . . . . . . . . 12 𝑁 = ((2 · 𝑀) + 1)
16 2nn 11711 . . . . . . . . . . . . . 14 2 ∈ ℕ
17 nnmulcl 11662 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
1816, 17mpan 688 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
1918peano2nnd 11655 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
2015, 19eqeltrid 2917 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2120nnnn0d 11956 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
22 2z 12015 . . . . . . . . . . 11 2 ∈ ℤ
23 nn0z 12006 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
24 zmulcl 12032 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
2522, 23, 24sylancr 589 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℤ)
26 bccl 13683 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑛) ∈ ℤ) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2721, 25, 26syl2an 597 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2827nn0cnd 11958 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℂ)
29 neg1cn 11752 . . . . . . . . 9 -1 ∈ ℂ
30 neg1ne0 11754 . . . . . . . . 9 -1 ≠ 0
31 nnz 12005 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
32 zsubcl 12025 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛) ∈ ℤ)
3331, 23, 32syl2an 597 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℤ)
34 expclz 13455 . . . . . . . . 9 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑛) ∈ ℤ) → (-1↑(𝑀𝑛)) ∈ ℂ)
3529, 30, 33, 34mp3an12i 1461 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑀𝑛)) ∈ ℂ)
3628, 35mulcld 10661 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) ∈ ℂ)
3736fmpttd 6879 . . . . . 6 (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ)
38 ffvelrn 6849 . . . . . 6 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
3937, 4, 38syl2an 597 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4014, 39eqeltrrd 2914 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℂ)
412, 3, 40elplyd 24792 . . 3 (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))) ∈ (Poly‘ℂ))
421, 41eqeltrid 2917 . 2 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
43 nnre 11645 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
44 nn0re 11907 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
45 ltnle 10720 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4643, 44, 45syl2an 597 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4712ad2antlr 725 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
4821ad2antrr 724 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℕ0)
49 nn0z 12006 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5049ad2antlr 725 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ)
51 zmulcl 12032 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℤ)
5222, 50, 51sylancr 589 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈ ℤ)
53 ax-1cn 10595 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
54532timesi 11776 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
5554oveq2i 7167 . . . . . . . . . . . . . . 15 ((2 · 𝑀) + (2 · 1)) = ((2 · 𝑀) + (1 + 1))
56 2cnd 11716 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 2 ∈ ℂ)
57 nncn 11646 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5857ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ)
5953a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 1 ∈ ℂ)
6056, 58, 59adddid 10665 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
6115oveq1i 7166 . . . . . . . . . . . . . . . 16 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
6218ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℕ)
6362nncnd 11654 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℂ)
6463, 59, 59addassd 10663 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
6561, 64syl5eq 2868 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
6655, 60, 653eqtr4a 2882 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1))
67 zltp1le 12033 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6831, 49, 67syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
6968biimpa 479 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗)
7043ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ)
71 peano2re 10813 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ)
7344ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ)
74 2re 11712 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
75 2pos 11741 . . . . . . . . . . . . . . . . . 18 0 < 2
7674, 75pm3.2i 473 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧ 0 < 2))
78 lemul2 11493 . . . . . . . . . . . . . . . 16 (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
7972, 73, 77, 78syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8069, 79mpbid 234 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗))
8166, 80eqbrtrrd 5090 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗))
8220nnzd 12087 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
8382ad2antrr 724 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ)
84 zltp1le 12033 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (2 · 𝑗) ∈ ℤ) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8583, 52, 84syl2anc 586 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8681, 85mpbird 259 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗))
8786olcd 870 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗)))
88 bcval4 13668 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0)
8948, 52, 87, 88syl3anc 1367 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0)
9089oveq1d 7171 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) = (0 · (-1↑(𝑀𝑗))))
91 zsubcl 12025 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀𝑗) ∈ ℤ)
9231, 49, 91syl2an 597 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀𝑗) ∈ ℤ)
93 expclz 13455 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑗) ∈ ℤ) → (-1↑(𝑀𝑗)) ∈ ℂ)
9429, 30, 92, 93mp3an12i 1461 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℂ)
9594adantr 483 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (-1↑(𝑀𝑗)) ∈ ℂ)
9695mul02d 10838 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (0 · (-1↑(𝑀𝑗))) = 0)
9747, 90, 963eqtrd 2860 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0)
9897ex 415 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
9946, 98sylbird 262 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
10099necon1ad 3033 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
101100ralrimiva 3182 . . . 4 (𝑀 ∈ ℕ → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
102 plyco0 24782 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
1033, 37, 102syl2anc 586 . . . 4 (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
104101, 103mpbird 259 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0})
10513oveq1d 7171 . . . . . . 7 (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
106105sumeq2i 15056 . . . . . 6 Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))
107106mpteq2i 5158 . . . . 5 (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
1081, 107eqtr4i 2847 . . . 4 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)))
109108a1i 11 . . 3 (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))))
110 oveq2 7164 . . . . . . . . 9 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
111110oveq2d 7172 . . . . . . . 8 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
112 oveq2 7164 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
113112oveq2d 7172 . . . . . . . 8 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
114111, 113oveq12d 7174 . . . . . . 7 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
115 ovex 7189 . . . . . . 7 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
116114, 10, 115fvmpt 6768 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
1173, 116syl 17 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
11857subidd 10985 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
119118oveq2d 7172 . . . . . . 7 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
120 exp0 13434 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
12129, 120ax-mp 5 . . . . . . 7 (-1↑0) = 1
122119, 121syl6eq 2872 . . . . . 6 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
123122oveq2d 7172 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
12418nnred 11653 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
125124lep1d 11571 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
126125, 15breqtrrdi 5108 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
12718nnnn0d 11956 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ0)
128 nn0uz 12281 . . . . . . . . . . 11 0 = (ℤ‘0)
129127, 128eleqtrdi 2923 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘0))
130 elfz5 12901 . . . . . . . . . 10 (((2 · 𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
131129, 82, 130syl2anc 586 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
132126, 131mpbird 259 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
133 bccl2 13684 . . . . . . . 8 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
134132, 133syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
135134nncnd 11654 . . . . . 6 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
136135mulid1d 10658 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
137117, 123, 1363eqtrd 2860 . . . 4 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = (𝑁C(2 · 𝑀)))
138134nnne0d 11688 . . . 4 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
139137, 138eqnetrd 3083 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) ≠ 0)
14042, 3, 37, 104, 109, 139dgreq 24834 . 2 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
14142, 3, 37, 104, 109coeeq 24817 . 2 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
14242, 140, 1413jca 1124 1 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  {csn 4567   class class class wbr 5066  cmpt 5146  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cexp 13430  Ccbc 13663  Σcsu 15042  Polycply 24774  coeffccoe 24776  degcdgr 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-0p 24271  df-ply 24778  df-coe 24780  df-dgr 24781
This theorem is referenced by:  basellem4  25661  basellem5  25662
  Copyright terms: Public domain W3C validator