MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsabs1 Structured version   Visualization version   GIF version

Theorem lgsabs1 27289
Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsabs1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem lgsabs1
StepHypRef Expression
1 lgscl 27264 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
21zcnd 12705 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
32abscld 15423 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℝ)
4 1re 11252 . . 3 1 ∈ ℝ
5 letri3 11337 . . 3 (((abs‘(𝐴 /L 𝑁)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
63, 4, 5sylancl 584 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
7 lgsle1 27265 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1)
87biantrurd 531 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
9 nnne0 12284 . . . 4 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) ≠ 0)
10 nn0abscl 15299 . . . . . . . 8 ((𝐴 /L 𝑁) ∈ ℤ → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0)
111, 10syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0)
12 elnn0 12512 . . . . . . 7 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0))
1311, 12sylib 217 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0))
1413ord 862 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) = 0))
1514necon1ad 2954 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 → (abs‘(𝐴 /L 𝑁)) ∈ ℕ))
169, 15impbid2 225 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ (abs‘(𝐴 /L 𝑁)) ≠ 0))
17 elnnnn0c 12555 . . . . 5 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))
1817baib 534 . . . 4 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁))))
1911, 18syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁))))
20 abs00 15276 . . . . . 6 ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) = 0 ↔ (𝐴 /L 𝑁) = 0))
2120necon3bid 2982 . . . . 5 ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0))
222, 21syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0))
23 lgsne0 27288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
2422, 23bitrd 278 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
2516, 19, 243bitr3d 308 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ (𝐴 gcd 𝑁) = 1))
266, 8, 253bitr2d 306 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  1c1 11147  cle 11287  cn 12250  0cn0 12510  cz 12596  abscabs 15221   gcd cgcd 16476   /L clgs 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-prm 16650  df-phi 16742  df-pc 16813  df-lgs 27248
This theorem is referenced by:  lgssq  27290  lgssq2  27291  lgsquad3  27340
  Copyright terms: Public domain W3C validator