MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsabs1 Structured version   Visualization version   GIF version

Theorem lgsabs1 26032
Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsabs1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem lgsabs1
StepHypRef Expression
1 lgscl 26007 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
21zcnd 12140 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
32abscld 14857 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℝ)
4 1re 10692 . . 3 1 ∈ ℝ
5 letri3 10777 . . 3 (((abs‘(𝐴 /L 𝑁)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
63, 4, 5sylancl 589 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
7 lgsle1 26008 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1)
87biantrurd 536 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ ((abs‘(𝐴 /L 𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁)))))
9 nnne0 11721 . . . 4 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) ≠ 0)
10 nn0abscl 14733 . . . . . . . 8 ((𝐴 /L 𝑁) ∈ ℤ → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0)
111, 10syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ∈ ℕ0)
12 elnn0 11949 . . . . . . 7 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0))
1311, 12sylib 221 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ∨ (abs‘(𝐴 /L 𝑁)) = 0))
1413ord 861 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (abs‘(𝐴 /L 𝑁)) ∈ ℕ → (abs‘(𝐴 /L 𝑁)) = 0))
1514necon1ad 2968 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 → (abs‘(𝐴 /L 𝑁)) ∈ ℕ))
169, 15impbid2 229 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ (abs‘(𝐴 /L 𝑁)) ≠ 0))
17 elnnnn0c 11992 . . . . 5 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 ∧ 1 ≤ (abs‘(𝐴 /L 𝑁))))
1817baib 539 . . . 4 ((abs‘(𝐴 /L 𝑁)) ∈ ℕ0 → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁))))
1911, 18syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ∈ ℕ ↔ 1 ≤ (abs‘(𝐴 /L 𝑁))))
20 abs00 14710 . . . . . 6 ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) = 0 ↔ (𝐴 /L 𝑁) = 0))
2120necon3bid 2995 . . . . 5 ((𝐴 /L 𝑁) ∈ ℂ → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0))
222, 21syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 /L 𝑁) ≠ 0))
23 lgsne0 26031 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
2422, 23bitrd 282 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
2516, 19, 243bitr3d 312 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ (abs‘(𝐴 /L 𝑁)) ↔ (𝐴 gcd 𝑁) = 1))
266, 8, 253bitr2d 310 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5036  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  0cc0 10588  1c1 10589  cle 10727  cn 11687  0cn0 11947  cz 12033  abscabs 14654   gcd cgcd 15906   /L clgs 25990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-oadd 8122  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-xnn0 12020  df-z 12034  df-uz 12296  df-q 12402  df-rp 12444  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-gcd 15907  df-prm 16081  df-phi 16171  df-pc 16242  df-lgs 25991
This theorem is referenced by:  lgssq  26033  lgssq2  26034  lgsquad3  26083
  Copyright terms: Public domain W3C validator