| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nepnfltpnf | Structured version Visualization version GIF version | ||
| Description: An extended real that is not +∞ is less than +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| nepnfltpnf.1 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| nepnfltpnf.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| nepnfltpnf | ⊢ (𝜑 → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nepnfltpnf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
| 2 | 1 | neneqd 2931 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = +∞) |
| 3 | nepnfltpnf.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | nltpnft 13130 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 6 | 2, 5 | mtbid 324 | . 2 ⊢ (𝜑 → ¬ ¬ 𝐴 < +∞) |
| 7 | notnotb 315 | . 2 ⊢ (𝐴 < +∞ ↔ ¬ ¬ 𝐴 < +∞) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 +∞cpnf 11211 ℝ*cxr 11213 < clt 11214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 |
| This theorem is referenced by: infrpge 45340 |
| Copyright terms: Public domain | W3C validator |