Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xadd0ge2 Structured version   Visualization version   GIF version

Theorem xadd0ge2 45330
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xadd0ge2.a (𝜑𝐴 ∈ ℝ*)
xadd0ge2.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xadd0ge2 (𝜑𝐴 ≤ (𝐵 +𝑒 𝐴))

Proof of Theorem xadd0ge2
StepHypRef Expression
1 xadd0ge2.a . . 3 (𝜑𝐴 ∈ ℝ*)
2 xadd0ge2.b . . 3 (𝜑𝐵 ∈ (0[,]+∞))
31, 2xadd0ge 45310 . 2 (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))
4 iccssxr 13397 . . . 4 (0[,]+∞) ⊆ ℝ*
54, 2sselid 3946 . . 3 (𝜑𝐵 ∈ ℝ*)
61, 5xaddcomd 45313 . 2 (𝜑 → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
73, 6breqtrd 5135 1 (𝜑𝐴 ≤ (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5109  (class class class)co 7389  0cc0 11074  +∞cpnf 11211  *cxr 11213  cle 11215   +𝑒 cxad 13076  [,]cicc 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-xadd 13079  df-icc 13319
This theorem is referenced by:  sge0xadd  46426
  Copyright terms: Public domain W3C validator