| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge2 | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xadd0ge2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xadd0ge2.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xadd0ge2 | ⊢ (𝜑 → 𝐴 ≤ (𝐵 +𝑒 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadd0ge2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xadd0ge2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1, 2 | xadd0ge 45305 | . 2 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
| 4 | iccssxr 13466 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 5 | 4, 2 | sselid 3980 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 6 | 1, 5 | xaddcomd 45308 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴)) |
| 7 | 3, 6 | breqtrd 5167 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐵 +𝑒 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5141 (class class class)co 7429 0cc0 11151 +∞cpnf 11288 ℝ*cxr 11290 ≤ cle 11292 +𝑒 cxad 13148 [,]cicc 13386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-po 5590 df-so 5591 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-xadd 13151 df-icc 13390 |
| This theorem is referenced by: sge0xadd 46423 |
| Copyright terms: Public domain | W3C validator |