| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltadd12dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ltadd12dd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltadd12dd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd12dd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltadd12dd.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| ltadd12dd.ac | ⊢ (𝜑 → 𝐴 < 𝐶) |
| ltadd12dd.bd | ⊢ (𝜑 → 𝐵 < 𝐷) |
| Ref | Expression |
|---|---|
| ltadd12dd | ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd12dd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltadd12dd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11256 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
| 4 | ltadd12dd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 4, 2 | readdcld 11256 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
| 6 | ltadd12dd.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 7 | 4, 6 | readdcld 11256 | . 2 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
| 8 | ltadd12dd.ac | . . 3 ⊢ (𝜑 → 𝐴 < 𝐶) | |
| 9 | 1, 4, 2, 8 | ltadd1dd 11840 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐵)) |
| 10 | ltadd12dd.bd | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) | |
| 11 | 2, 6, 4, 10 | ltadd2dd 11386 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) < (𝐶 + 𝐷)) |
| 12 | 3, 5, 7, 9, 11 | lttrd 11388 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5116 (class class class)co 7399 ℝcr 11120 + caddc 11124 < clt 11261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 |
| This theorem is referenced by: sge0xaddlem1 46392 smfaddlem1 46722 |
| Copyright terms: Public domain | W3C validator |