![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltadd12dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ltadd12dd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd12dd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd12dd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltadd12dd.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
ltadd12dd.ac | ⊢ (𝜑 → 𝐴 < 𝐶) |
ltadd12dd.bd | ⊢ (𝜑 → 𝐵 < 𝐷) |
Ref | Expression |
---|---|
ltadd12dd | ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd12dd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltadd12dd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 10406 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | ltadd12dd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 4, 2 | readdcld 10406 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
6 | ltadd12dd.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | 4, 6 | readdcld 10406 | . 2 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
8 | ltadd12dd.ac | . . 3 ⊢ (𝜑 → 𝐴 < 𝐶) | |
9 | 1, 4, 2, 8 | ltadd1dd 10986 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐵)) |
10 | ltadd12dd.bd | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) | |
11 | 2, 6, 4, 10 | ltadd2dd 10535 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) < (𝐶 + 𝐷)) |
12 | 3, 5, 7, 9, 11 | lttrd 10537 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 4886 (class class class)co 6922 ℝcr 10271 + caddc 10275 < clt 10411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 |
This theorem is referenced by: sge0xaddlem1 41578 smfaddlem1 41902 |
Copyright terms: Public domain | W3C validator |