Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltadd12dd Structured version   Visualization version   GIF version

Theorem ltadd12dd 45243
Description: Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ltadd12dd.a (𝜑𝐴 ∈ ℝ)
ltadd12dd.b (𝜑𝐵 ∈ ℝ)
ltadd12dd.c (𝜑𝐶 ∈ ℝ)
ltadd12dd.d (𝜑𝐷 ∈ ℝ)
ltadd12dd.ac (𝜑𝐴 < 𝐶)
ltadd12dd.bd (𝜑𝐵 < 𝐷)
Assertion
Ref Expression
ltadd12dd (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))

Proof of Theorem ltadd12dd
StepHypRef Expression
1 ltadd12dd.a . . 3 (𝜑𝐴 ∈ ℝ)
2 ltadd12dd.b . . 3 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 11281 . 2 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 ltadd12dd.c . . 3 (𝜑𝐶 ∈ ℝ)
54, 2readdcld 11281 . 2 (𝜑 → (𝐶 + 𝐵) ∈ ℝ)
6 ltadd12dd.d . . 3 (𝜑𝐷 ∈ ℝ)
74, 6readdcld 11281 . 2 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
8 ltadd12dd.ac . . 3 (𝜑𝐴 < 𝐶)
91, 4, 2, 8ltadd1dd 11865 . 2 (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐵))
10 ltadd12dd.bd . . 3 (𝜑𝐵 < 𝐷)
112, 6, 4, 10ltadd2dd 11411 . 2 (𝜑 → (𝐶 + 𝐵) < (𝐶 + 𝐷))
123, 5, 7, 9, 11lttrd 11413 1 (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104   class class class wbr 5149  (class class class)co 7425  cr 11145   + caddc 11149   < clt 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-ov 7428  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-ltxr 11291
This theorem is referenced by:  sge0xaddlem1  46339  smfaddlem1  46669
  Copyright terms: Public domain W3C validator