Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltadd12dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ltadd12dd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd12dd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd12dd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltadd12dd.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
ltadd12dd.ac | ⊢ (𝜑 → 𝐴 < 𝐶) |
ltadd12dd.bd | ⊢ (𝜑 → 𝐵 < 𝐷) |
Ref | Expression |
---|---|
ltadd12dd | ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd12dd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltadd12dd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 10988 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | ltadd12dd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 4, 2 | readdcld 10988 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
6 | ltadd12dd.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | 4, 6 | readdcld 10988 | . 2 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
8 | ltadd12dd.ac | . . 3 ⊢ (𝜑 → 𝐴 < 𝐶) | |
9 | 1, 4, 2, 8 | ltadd1dd 11569 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐵)) |
10 | ltadd12dd.bd | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) | |
11 | 2, 6, 4, 10 | ltadd2dd 11117 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) < (𝐶 + 𝐷)) |
12 | 3, 5, 7, 9, 11 | lttrd 11119 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 + caddc 10858 < clt 10993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 |
This theorem is referenced by: sge0xaddlem1 43925 smfaddlem1 44249 |
Copyright terms: Public domain | W3C validator |