MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltpnft Structured version   Visualization version   GIF version

Theorem nltpnft 13169
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 pnfxr 11292 . . . 4 +∞ ∈ ℝ*
2 xrltnr 13125 . . . 4 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
31, 2ax-mp 5 . . 3 ¬ +∞ < +∞
4 breq1 5145 . . 3 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
53, 4mtbiri 327 . 2 (𝐴 = +∞ → ¬ 𝐴 < +∞)
6 pnfge 13136 . . . 4 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
7 xrleloe 13149 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
81, 7mpan2 690 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
96, 8mpbid 231 . . 3 (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞))
109ord 863 . 2 (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞))
115, 10impbid2 225 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 846   = wceq 1534  wcel 2099   class class class wbr 5142  +∞cpnf 11269  *cxr 11271   < clt 11272  cle 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278
This theorem is referenced by:  xgepnf  13170  xrrebnd  13173  xlt2add  13265  supxrbnd1  13326  supxrbnd2  13327  supxrgtmnf  13334  supxrre2  13336  ioopnfsup  13855  icopnfsup  13856  xrsdsreclblem  21338  ovoliun  25427  ovolicopnf  25446  voliunlem3  25474  volsup  25478  itg2seq  25665  nmoreltpnf  30572  nmopreltpnf  31672  ismblfin  37123  supxrgere  44687  supxrgelem  44691  supxrge  44692  suplesup  44693  nepnfltpnf  44696  xrpnf  44840  sge0repnf  45746  sge0rpcpnf  45781  sge0rernmpt  45782
  Copyright terms: Public domain W3C validator