MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltpnft Structured version   Visualization version   GIF version

Theorem nltpnft 12719
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 pnfxr 10852 . . . 4 +∞ ∈ ℝ*
2 xrltnr 12676 . . . 4 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
31, 2ax-mp 5 . . 3 ¬ +∞ < +∞
4 breq1 5042 . . 3 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
53, 4mtbiri 330 . 2 (𝐴 = +∞ → ¬ 𝐴 < +∞)
6 pnfge 12687 . . . 4 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
7 xrleloe 12699 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
81, 7mpan2 691 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
96, 8mpbid 235 . . 3 (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞))
109ord 864 . 2 (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞))
115, 10impbid2 229 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wo 847   = wceq 1543  wcel 2112   class class class wbr 5039  +∞cpnf 10829  *cxr 10831   < clt 10832  cle 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838
This theorem is referenced by:  xgepnf  12720  xrrebnd  12723  xlt2add  12815  supxrbnd1  12876  supxrbnd2  12877  supxrgtmnf  12884  supxrre2  12886  ioopnfsup  13402  icopnfsup  13403  xrsdsreclblem  20363  ovoliun  24356  ovolicopnf  24375  voliunlem3  24403  volsup  24407  itg2seq  24594  nmoreltpnf  28804  nmopreltpnf  29904  ismblfin  35504  supxrgere  42486  supxrgelem  42490  supxrge  42491  suplesup  42492  nepnfltpnf  42495  xrpnf  42642  sge0repnf  43542  sge0rpcpnf  43577  sge0rernmpt  43578
  Copyright terms: Public domain W3C validator