|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nltpnft | Structured version Visualization version GIF version | ||
| Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pnfxr 11316 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | xrltnr 13162 | . . . 4 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ +∞ < +∞ | 
| 4 | breq1 5145 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) | 
| 6 | pnfge 13173 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | xrleloe 13187 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | |
| 8 | 1, 7 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | 
| 9 | 6, 8 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞)) | 
| 10 | 9 | ord 864 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞)) | 
| 11 | 5, 10 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 +∞cpnf 11293 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 | 
| This theorem is referenced by: xgepnf 13208 xrrebnd 13211 xlt2add 13303 supxrbnd1 13364 supxrbnd2 13365 supxrgtmnf 13372 supxrre2 13374 ioopnfsup 13905 icopnfsup 13906 xrsdsreclblem 21431 ovoliun 25541 ovolicopnf 25560 voliunlem3 25588 volsup 25592 itg2seq 25778 nmoreltpnf 30789 nmopreltpnf 31889 ismblfin 37669 supxrgere 45349 supxrgelem 45353 supxrge 45354 suplesup 45355 nepnfltpnf 45358 xrpnf 45501 sge0repnf 46406 sge0rpcpnf 46441 sge0rernmpt 46442 | 
| Copyright terms: Public domain | W3C validator |