MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltpnft Structured version   Visualization version   GIF version

Theorem nltpnft 13065
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 pnfxr 11173 . . . 4 +∞ ∈ ℝ*
2 xrltnr 13020 . . . 4 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
31, 2ax-mp 5 . . 3 ¬ +∞ < +∞
4 breq1 5096 . . 3 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
53, 4mtbiri 327 . 2 (𝐴 = +∞ → ¬ 𝐴 < +∞)
6 pnfge 13031 . . . 4 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
7 xrleloe 13045 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
81, 7mpan2 691 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞)))
96, 8mpbid 232 . . 3 (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞))
109ord 864 . 2 (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞))
115, 10impbid2 226 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2113   class class class wbr 5093  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  xgepnf  13066  xrrebnd  13069  xlt2add  13161  supxrbnd1  13222  supxrbnd2  13223  supxrgtmnf  13230  supxrre2  13232  ioopnfsup  13770  icopnfsup  13771  xrsdsreclblem  21351  ovoliun  25434  ovolicopnf  25453  voliunlem3  25481  volsup  25485  itg2seq  25671  nmoreltpnf  30751  nmopreltpnf  31851  ismblfin  37721  supxrgere  45456  supxrgelem  45460  supxrge  45461  suplesup  45462  nepnfltpnf  45465  xrpnf  45607  sge0repnf  46508  sge0rpcpnf  46543  sge0rernmpt  46544
  Copyright terms: Public domain W3C validator