![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltpnft | Structured version Visualization version GIF version |
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11292 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xrltnr 13125 | . . . 4 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ +∞ < +∞ |
4 | breq1 5145 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
6 | pnfge 13136 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | xrleloe 13149 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | |
8 | 1, 7 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) |
9 | 6, 8 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞)) |
10 | 9 | ord 863 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞)) |
11 | 5, 10 | impbid2 225 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 +∞cpnf 11269 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 |
This theorem is referenced by: xgepnf 13170 xrrebnd 13173 xlt2add 13265 supxrbnd1 13326 supxrbnd2 13327 supxrgtmnf 13334 supxrre2 13336 ioopnfsup 13855 icopnfsup 13856 xrsdsreclblem 21338 ovoliun 25427 ovolicopnf 25446 voliunlem3 25474 volsup 25478 itg2seq 25665 nmoreltpnf 30572 nmopreltpnf 31672 ismblfin 37123 supxrgere 44687 supxrgelem 44691 supxrge 44692 suplesup 44693 nepnfltpnf 44696 xrpnf 44840 sge0repnf 45746 sge0rpcpnf 45781 sge0rernmpt 45782 |
Copyright terms: Public domain | W3C validator |