![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltpnft | Structured version Visualization version GIF version |
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11313 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xrltnr 13159 | . . . 4 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ +∞ < +∞ |
4 | breq1 5151 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
6 | pnfge 13170 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | xrleloe 13183 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | |
8 | 1, 7 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) |
9 | 6, 8 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞)) |
10 | 9 | ord 864 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞)) |
11 | 5, 10 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: xgepnf 13204 xrrebnd 13207 xlt2add 13299 supxrbnd1 13360 supxrbnd2 13361 supxrgtmnf 13368 supxrre2 13370 ioopnfsup 13901 icopnfsup 13902 xrsdsreclblem 21448 ovoliun 25554 ovolicopnf 25573 voliunlem3 25601 volsup 25605 itg2seq 25792 nmoreltpnf 30798 nmopreltpnf 31898 ismblfin 37648 supxrgere 45283 supxrgelem 45287 supxrge 45288 suplesup 45289 nepnfltpnf 45292 xrpnf 45436 sge0repnf 46342 sge0rpcpnf 46377 sge0rernmpt 46378 |
Copyright terms: Public domain | W3C validator |