| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nltpnft | Structured version Visualization version GIF version | ||
| Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11163 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | xrltnr 13015 | . . . 4 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ +∞ < +∞ |
| 4 | breq1 5094 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
| 6 | pnfge 13026 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | xrleloe 13040 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | |
| 8 | 1, 7 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) |
| 9 | 6, 8 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞)) |
| 10 | 9 | ord 864 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞)) |
| 11 | 5, 10 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 +∞cpnf 11140 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: xgepnf 13061 xrrebnd 13064 xlt2add 13156 supxrbnd1 13217 supxrbnd2 13218 supxrgtmnf 13225 supxrre2 13227 ioopnfsup 13765 icopnfsup 13766 xrsdsreclblem 21347 ovoliun 25431 ovolicopnf 25450 voliunlem3 25478 volsup 25482 itg2seq 25668 nmoreltpnf 30744 nmopreltpnf 31844 ismblfin 37700 supxrgere 45371 supxrgelem 45375 supxrge 45376 suplesup 45377 nepnfltpnf 45380 xrpnf 45522 sge0repnf 46423 sge0rpcpnf 46458 sge0rernmpt 46459 |
| Copyright terms: Public domain | W3C validator |