![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nltpnft | Structured version Visualization version GIF version |
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11264 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xrltnr 13095 | . . . 4 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ +∞ < +∞ |
4 | breq1 5141 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
6 | pnfge 13106 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | xrleloe 13119 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) | |
8 | 1, 7 | mpan2 688 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ (𝐴 < +∞ ∨ 𝐴 = +∞))) |
9 | 6, 8 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ∨ 𝐴 = +∞)) |
10 | 9 | ord 861 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 < +∞ → 𝐴 = +∞)) |
11 | 5, 10 | impbid2 225 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 +∞cpnf 11241 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-pre-lttri 11179 ax-pre-lttrn 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 |
This theorem is referenced by: xgepnf 13140 xrrebnd 13143 xlt2add 13235 supxrbnd1 13296 supxrbnd2 13297 supxrgtmnf 13304 supxrre2 13306 ioopnfsup 13825 icopnfsup 13826 xrsdsreclblem 21270 ovoliun 25344 ovolicopnf 25363 voliunlem3 25391 volsup 25395 itg2seq 25582 nmoreltpnf 30446 nmopreltpnf 31546 ismblfin 36985 supxrgere 44494 supxrgelem 44498 supxrge 44499 suplesup 44500 nepnfltpnf 44503 xrpnf 44647 sge0repnf 45553 sge0rpcpnf 45588 sge0rernmpt 45589 |
Copyright terms: Public domain | W3C validator |