Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcn Structured version   Visualization version   GIF version

Theorem fprodcn 40402
Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcn.d 𝑘𝜑
fprodcn.k 𝐾 = (TopOpen‘ℂfld)
fprodcn.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcn.a (𝜑𝐴 ∈ Fin)
fprodcn.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcn (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem fprodcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14924 . . . 4 (𝑦 = ∅ → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21mpteq2dv 4904 . . 3 (𝑦 = ∅ → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵))
32eleq1d 2829 . 2 (𝑦 = ∅ → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 prodeq1 14924 . . . 4 (𝑦 = 𝑧 → ∏𝑘𝑦 𝐵 = ∏𝑘𝑧 𝐵)
54mpteq2dv 4904 . . 3 (𝑦 = 𝑧 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵))
65eleq1d 2829 . 2 (𝑦 = 𝑧 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)))
7 prodeq1 14924 . . . 4 (𝑦 = (𝑧 ∪ {𝑤}) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵)
87mpteq2dv 4904 . . 3 (𝑦 = (𝑧 ∪ {𝑤}) → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵))
98eleq1d 2829 . 2 (𝑦 = (𝑧 ∪ {𝑤}) → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
10 prodeq1 14924 . . . 4 (𝑦 = 𝐴 → ∏𝑘𝑦 𝐵 = ∏𝑘𝐴 𝐵)
1110mpteq2dv 4904 . . 3 (𝑦 = 𝐴 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵))
1211eleq1d 2829 . 2 (𝑦 = 𝐴 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 prod0 14958 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
1413mpteq2i 4900 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 1)
15 eqidd 2766 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
1615cbvmptv 4909 . . . . 5 (𝑥𝑋 ↦ 1) = (𝑦𝑋 ↦ 1)
1714, 16eqtri 2787 . . . 4 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1)
1817a1i 11 . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1))
19 fprodcn.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 fprodcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
2120cnfldtopon 22865 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
2221a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
23 1cnd 10288 . . . 4 (𝜑 → 1 ∈ ℂ)
2419, 22, 23cnmptc 21745 . . 3 (𝜑 → (𝑦𝑋 ↦ 1) ∈ (𝐽 Cn 𝐾))
2518, 24eqeltrd 2844 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
26 nfcv 2907 . . . . . 6 𝑦𝑘 ∈ (𝑧 ∪ {𝑤})𝐵
27 nfcv 2907 . . . . . . 7 𝑥(𝑧 ∪ {𝑤})
28 nfcsb1v 3707 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
2927, 28nfcprod 14926 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵
30 csbeq1a 3700 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3130prodeq2ad 40394 . . . . . 6 (𝑥 = 𝑦 → ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3226, 29, 31cbvmpt 4908 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3332a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵))
34 fprodcn.d . . . . . . 7 𝑘𝜑
35 nfv 2009 . . . . . . 7 𝑘(𝑧𝐴𝑤 ∈ (𝐴𝑧))
3634, 35nfan 1998 . . . . . 6 𝑘(𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧)))
37 nfcv 2907 . . . . . . . 8 𝑘𝑋
38 nfcv 2907 . . . . . . . . 9 𝑘𝑧
3938nfcprod1 14925 . . . . . . . 8 𝑘𝑘𝑧 𝐵
4037, 39nfmpt 4905 . . . . . . 7 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵)
41 nfcv 2907 . . . . . . 7 𝑘(𝐽 Cn 𝐾)
4240, 41nfel 2920 . . . . . 6 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)
4336, 42nfan 1998 . . . . 5 𝑘((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾))
4419ad2antrr 717 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
45 fprodcn.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4645ad2antrr 717 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐴 ∈ Fin)
47 nfcv 2907 . . . . . . . . . 10 𝑦𝐵
4847, 28, 30cbvmpt 4908 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4948eqcomi 2774 . . . . . . . 8 (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵)
5049a1i 11 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵))
51 fprodcn.b . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5250, 51eqeltrd 2844 . . . . . 6 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
5352ad4ant14 759 . . . . 5 ((((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) ∧ 𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
54 simplrl 795 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
55 simplrr 796 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑤 ∈ (𝐴𝑧))
56 nfcv 2907 . . . . . . . . 9 𝑦𝑘𝑧 𝐵
57 nfcv 2907 . . . . . . . . . 10 𝑥𝑧
5857, 28nfcprod 14926 . . . . . . . . 9 𝑥𝑘𝑧 𝑦 / 𝑥𝐵
5930prodeq2sdv 14939 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑧 𝐵 = ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6056, 58, 59cbvmpt 4908 . . . . . . . 8 (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) = (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6160eleq1i 2835 . . . . . . 7 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6261biimpi 207 . . . . . 6 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6362adantl 473 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6443, 20, 44, 46, 53, 54, 55, 63fprodcnlem 40401 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6533, 64eqeltrd 2844 . . 3 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾))
6665ex 401 . 2 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
673, 6, 9, 12, 25, 66, 45findcard2d 8409 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wnf 1878  wcel 2155  csb 3691  cdif 3729  cun 3730  wss 3732  c0 4079  {csn 4334  cmpt 4888  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  1c1 10190  cprod 14920  TopOpenctopn 16350  fldccnfld 20019  TopOnctopon 20994   Cn ccn 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-prod 14921  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-tx 21645  df-hmeo 21838  df-xms 22404  df-ms 22405  df-tms 22406
This theorem is referenced by:  fprodsub2cncf  40689  fprodadd2cncf  40690
  Copyright terms: Public domain W3C validator