Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcn Structured version   Visualization version   GIF version

Theorem fprodcn 41377
Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcn.d 𝑘𝜑
fprodcn.k 𝐾 = (TopOpen‘ℂfld)
fprodcn.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcn.a (𝜑𝐴 ∈ Fin)
fprodcn.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcn (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑘,𝐽   𝑘,𝐾   𝑘,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem fprodcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15084 . . . 4 (𝑦 = ∅ → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21mpteq2dv 5050 . . 3 (𝑦 = ∅ → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵))
32eleq1d 2865 . 2 (𝑦 = ∅ → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 prodeq1 15084 . . . 4 (𝑦 = 𝑧 → ∏𝑘𝑦 𝐵 = ∏𝑘𝑧 𝐵)
54mpteq2dv 5050 . . 3 (𝑦 = 𝑧 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵))
65eleq1d 2865 . 2 (𝑦 = 𝑧 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)))
7 prodeq1 15084 . . . 4 (𝑦 = (𝑧 ∪ {𝑤}) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵)
87mpteq2dv 5050 . . 3 (𝑦 = (𝑧 ∪ {𝑤}) → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵))
98eleq1d 2865 . 2 (𝑦 = (𝑧 ∪ {𝑤}) → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
10 prodeq1 15084 . . . 4 (𝑦 = 𝐴 → ∏𝑘𝑦 𝐵 = ∏𝑘𝐴 𝐵)
1110mpteq2dv 5050 . . 3 (𝑦 = 𝐴 → (𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) = (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵))
1211eleq1d 2865 . 2 (𝑦 = 𝐴 → ((𝑥𝑋 ↦ ∏𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 prod0 15118 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
1413mpteq2i 5046 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 1)
15 eqidd 2794 . . . . . 6 (𝑥 = 𝑦 → 1 = 1)
1615cbvmptv 5055 . . . . 5 (𝑥𝑋 ↦ 1) = (𝑦𝑋 ↦ 1)
1714, 16eqtri 2817 . . . 4 (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1)
1817a1i 11 . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) = (𝑦𝑋 ↦ 1))
19 fprodcn.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 fprodcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
2120cnfldtopon 23062 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
2221a1i 11 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
23 1cnd 10471 . . . 4 (𝜑 → 1 ∈ ℂ)
2419, 22, 23cnmptc 21942 . . 3 (𝜑 → (𝑦𝑋 ↦ 1) ∈ (𝐽 Cn 𝐾))
2518, 24eqeltrd 2881 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
26 nfcv 2947 . . . . . 6 𝑦𝑘 ∈ (𝑧 ∪ {𝑤})𝐵
27 nfcv 2947 . . . . . . 7 𝑥(𝑧 ∪ {𝑤})
28 nfcsb1v 3828 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
2927, 28nfcprod 15086 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵
30 csbeq1a 3819 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3130prodeq2ad 41369 . . . . . 6 (𝑥 = 𝑦 → ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵 = ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3226, 29, 31cbvmpt 5054 . . . . 5 (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵)
3332a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) = (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵))
34 fprodcn.d . . . . . . 7 𝑘𝜑
35 nfv 1890 . . . . . . 7 𝑘(𝑧𝐴𝑤 ∈ (𝐴𝑧))
3634, 35nfan 1879 . . . . . 6 𝑘(𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧)))
37 nfcv 2947 . . . . . . . 8 𝑘𝑋
38 nfcv 2947 . . . . . . . . 9 𝑘𝑧
3938nfcprod1 15085 . . . . . . . 8 𝑘𝑘𝑧 𝐵
4037, 39nfmpt 5051 . . . . . . 7 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵)
41 nfcv 2947 . . . . . . 7 𝑘(𝐽 Cn 𝐾)
4240, 41nfel 2959 . . . . . 6 𝑘(𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)
4336, 42nfan 1879 . . . . 5 𝑘((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾))
4419ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
45 fprodcn.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4645ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐴 ∈ Fin)
47 nfcv 2947 . . . . . . . . . 10 𝑦𝐵
4847, 28, 30cbvmpt 5054 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4948eqcomi 2802 . . . . . . . 8 (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵)
5049a1i 11 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) = (𝑥𝑋𝐵))
51 fprodcn.b . . . . . . 7 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
5250, 51eqeltrd 2881 . . . . . 6 ((𝜑𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
5352ad4ant14 748 . . . . 5 ((((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) ∧ 𝑘𝐴) → (𝑦𝑋𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
54 simplrl 773 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
55 simplrr 774 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑤 ∈ (𝐴𝑧))
56 nfcv 2947 . . . . . . . . 9 𝑦𝑘𝑧 𝐵
57 nfcv 2947 . . . . . . . . . 10 𝑥𝑧
5857, 28nfcprod 15086 . . . . . . . . 9 𝑥𝑘𝑧 𝑦 / 𝑥𝐵
5930prodeq2sdv 15099 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑧 𝐵 = ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6056, 58, 59cbvmpt 5054 . . . . . . . 8 (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) = (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵)
6160eleq1i 2871 . . . . . . 7 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6261biimpi 217 . . . . . 6 ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6362adantl 482 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘𝑧 𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6443, 20, 44, 46, 53, 54, 55, 63fprodcnlem 41376 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝑦 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
6533, 64eqeltrd 2881 . . 3 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾))
6665ex 413 . 2 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ((𝑥𝑋 ↦ ∏𝑘𝑧 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑤})𝐵) ∈ (𝐽 Cn 𝐾)))
673, 6, 9, 12, 25, 66, 45findcard2d 8596 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wnf 1763  wcel 2079  csb 3806  cdif 3851  cun 3852  wss 3854  c0 4206  {csn 4466  cmpt 5035  cfv 6217  (class class class)co 7007  Fincfn 8347  cc 10370  1c1 10373  cprod 15080  TopOpenctopn 16512  fldccnfld 20215  TopOnctopon 21190   Cn ccn 21504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-icc 12584  df-fz 12732  df-fzo 12873  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-prod 15081  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cn 21507  df-cnp 21508  df-tx 21842  df-hmeo 22035  df-xms 22601  df-ms 22602  df-tms 22603
This theorem is referenced by:  fprodsub2cncf  41684  fprodadd2cncf  41685
  Copyright terms: Public domain W3C validator