| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmooval | Structured version Visualization version GIF version | ||
| Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoofval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoofval.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoofval.3 | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoofval.4 | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoofval.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| Ref | Expression |
|---|---|
| nmooval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | 1 | fvexi 6854 | . . . 4 ⊢ 𝑌 ∈ V |
| 3 | nmoofval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3 | fvexi 6854 | . . . 4 ⊢ 𝑋 ∈ V |
| 5 | 2, 4 | elmap 8821 | . . 3 ⊢ (𝑇 ∈ (𝑌 ↑m 𝑋) ↔ 𝑇:𝑋⟶𝑌) |
| 6 | nmoofval.3 | . . . . . 6 ⊢ 𝐿 = (normCV‘𝑈) | |
| 7 | nmoofval.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
| 8 | nmoofval.6 | . . . . . 6 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 9 | 3, 1, 6, 7, 8 | nmoofval 30664 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) |
| 10 | 9 | fveq1d 6842 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑇) = ((𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇)) |
| 11 | fveq1 6839 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
| 12 | 11 | fveq2d 6844 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑀‘(𝑡‘𝑧)) = (𝑀‘(𝑇‘𝑧))) |
| 13 | 12 | eqeq2d 2740 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡‘𝑧)) ↔ 𝑥 = (𝑀‘(𝑇‘𝑧)))) |
| 14 | 13 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
| 15 | 14 | rexbidv 3157 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
| 16 | 15 | abbidv 2795 | . . . . . 6 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}) |
| 17 | 16 | supeq1d 9373 | . . . . 5 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) | |
| 19 | xrltso 13077 | . . . . . 6 ⊢ < Or ℝ* | |
| 20 | 19 | supex 9391 | . . . . 5 ⊢ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ V |
| 21 | 17, 18, 20 | fvmpt 6950 | . . . 4 ⊢ (𝑇 ∈ (𝑌 ↑m 𝑋) → ((𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 22 | 10, 21 | sylan9eq 2784 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌 ↑m 𝑋)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 23 | 5, 22 | sylan2br 595 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| 24 | 23 | 3impa 1109 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 supcsup 9367 1c1 11045 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 NrmCVeccnv 30486 BaseSetcba 30488 normCVcnmcv 30492 normOpOLD cnmoo 30643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-nmoo 30647 |
| This theorem is referenced by: nmoxr 30668 nmooge0 30669 nmorepnf 30670 nmoolb 30673 nmoubi 30674 nmoo0 30693 nmlno0lem 30695 |
| Copyright terms: Public domain | W3C validator |