MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Visualization version   GIF version

Theorem nmooval 29125
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmooval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Distinct variable groups:   𝑥,𝑧,𝑈   𝑥,𝑊,𝑧   𝑧,𝑋   𝑥,𝑌   𝑥,𝑇,𝑧
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmooval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
21fvexi 6788 . . . 4 𝑌 ∈ V
3 nmoofval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43fvexi 6788 . . . 4 𝑋 ∈ V
52, 4elmap 8659 . . 3 (𝑇 ∈ (𝑌m 𝑋) ↔ 𝑇:𝑋𝑌)
6 nmoofval.3 . . . . . 6 𝐿 = (normCV𝑈)
7 nmoofval.4 . . . . . 6 𝑀 = (normCV𝑊)
8 nmoofval.6 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
93, 1, 6, 7, 8nmoofval 29124 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
109fveq1d 6776 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑇) = ((𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇))
11 fveq1 6773 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
1211fveq2d 6778 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑀‘(𝑡𝑧)) = (𝑀‘(𝑇𝑧)))
1312eqeq2d 2749 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑇𝑧))))
1413anbi2d 629 . . . . . . . 8 (𝑡 = 𝑇 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1514rexbidv 3226 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))))
1615abbidv 2807 . . . . . 6 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))})
1716supeq1d 9205 . . . . 5 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
18 eqid 2738 . . . . 5 (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
19 xrltso 12875 . . . . . 6 < Or ℝ*
2019supex 9222 . . . . 5 sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) ∈ V
2117, 18, 20fvmpt 6875 . . . 4 (𝑇 ∈ (𝑌m 𝑋) → ((𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
2210, 21sylan9eq 2798 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌m 𝑋)) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
235, 22sylan2br 595 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
24233impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wrex 3065   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  supcsup 9199  1c1 10872  *cxr 11008   < clt 11009  cle 11010  NrmCVeccnv 28946  BaseSetcba 28948  normCVcnmcv 28952   normOpOLD cnmoo 29103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-nmoo 29107
This theorem is referenced by:  nmoxr  29128  nmooge0  29129  nmorepnf  29130  nmoolb  29133  nmoubi  29134  nmoo0  29153  nmlno0lem  29155
  Copyright terms: Public domain W3C validator