![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmooval | Structured version Visualization version GIF version |
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoofval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoofval.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoofval.3 | ⊢ 𝐿 = (normCV‘𝑈) |
nmoofval.4 | ⊢ 𝑀 = (normCV‘𝑊) |
nmoofval.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoofval.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | 1 | fvexi 6423 | . . . 4 ⊢ 𝑌 ∈ V |
3 | nmoofval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3 | fvexi 6423 | . . . 4 ⊢ 𝑋 ∈ V |
5 | 2, 4 | elmap 8122 | . . 3 ⊢ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝑇:𝑋⟶𝑌) |
6 | nmoofval.3 | . . . . . 6 ⊢ 𝐿 = (normCV‘𝑈) | |
7 | nmoofval.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
8 | nmoofval.6 | . . . . . 6 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
9 | 3, 1, 6, 7, 8 | nmoofval 28133 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) |
10 | 9 | fveq1d 6411 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑇) = ((𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇)) |
11 | fveq1 6408 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
12 | 11 | fveq2d 6413 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑀‘(𝑡‘𝑧)) = (𝑀‘(𝑇‘𝑧))) |
13 | 12 | eqeq2d 2807 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡‘𝑧)) ↔ 𝑥 = (𝑀‘(𝑇‘𝑧)))) |
14 | 13 | anbi2d 623 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
15 | 14 | rexbidv 3231 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
16 | 15 | abbidv 2916 | . . . . . 6 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}) |
17 | 16 | supeq1d 8592 | . . . . 5 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
18 | eqid 2797 | . . . . 5 ⊢ (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) | |
19 | xrltso 12217 | . . . . . 6 ⊢ < Or ℝ* | |
20 | 19 | supex 8609 | . . . . 5 ⊢ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ V |
21 | 17, 18, 20 | fvmpt 6505 | . . . 4 ⊢ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) → ((𝑡 ∈ (𝑌 ↑𝑚 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
22 | 10, 21 | sylan9eq 2851 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌 ↑𝑚 𝑋)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
23 | 5, 22 | sylan2br 589 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
24 | 23 | 3impa 1137 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 {cab 2783 ∃wrex 3088 class class class wbr 4841 ↦ cmpt 4920 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 supcsup 8586 1c1 10223 ℝ*cxr 10360 < clt 10361 ≤ cle 10362 NrmCVeccnv 27955 BaseSetcba 27957 normCVcnmcv 27961 normOpOLD cnmoo 28112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-nmoo 28116 |
This theorem is referenced by: nmoxr 28137 nmooge0 28138 nmorepnf 28139 nmoolb 28142 nmoubi 28143 nmoo0 28162 nmlno0lem 28164 |
Copyright terms: Public domain | W3C validator |