MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Visualization version   GIF version

Theorem nmooval 30016
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nmoofval.2 π‘Œ = (BaseSetβ€˜π‘Š)
nmoofval.3 𝐿 = (normCVβ€˜π‘ˆ)
nmoofval.4 𝑀 = (normCVβ€˜π‘Š)
nmoofval.6 𝑁 = (π‘ˆ normOpOLD π‘Š)
Assertion
Ref Expression
nmooval ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
Distinct variable groups:   π‘₯,𝑧,π‘ˆ   π‘₯,π‘Š,𝑧   𝑧,𝑋   π‘₯,π‘Œ   π‘₯,𝑇,𝑧
Allowed substitution hints:   𝐿(π‘₯,𝑧)   𝑀(π‘₯,𝑧)   𝑁(π‘₯,𝑧)   𝑋(π‘₯)   π‘Œ(𝑧)

Proof of Theorem nmooval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5 π‘Œ = (BaseSetβ€˜π‘Š)
21fvexi 6906 . . . 4 π‘Œ ∈ V
3 nmoofval.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
43fvexi 6906 . . . 4 𝑋 ∈ V
52, 4elmap 8865 . . 3 (𝑇 ∈ (π‘Œ ↑m 𝑋) ↔ 𝑇:π‘‹βŸΆπ‘Œ)
6 nmoofval.3 . . . . . 6 𝐿 = (normCVβ€˜π‘ˆ)
7 nmoofval.4 . . . . . 6 𝑀 = (normCVβ€˜π‘Š)
8 nmoofval.6 . . . . . 6 𝑁 = (π‘ˆ normOpOLD π‘Š)
93, 1, 6, 7, 8nmoofval 30015 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑁 = (𝑑 ∈ (π‘Œ ↑m 𝑋) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < )))
109fveq1d 6894 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ (π‘β€˜π‘‡) = ((𝑑 ∈ (π‘Œ ↑m 𝑋) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < ))β€˜π‘‡))
11 fveq1 6891 . . . . . . . . . . 11 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘§) = (π‘‡β€˜π‘§))
1211fveq2d 6896 . . . . . . . . . 10 (𝑑 = 𝑇 β†’ (π‘€β€˜(π‘‘β€˜π‘§)) = (π‘€β€˜(π‘‡β€˜π‘§)))
1312eqeq2d 2744 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)) ↔ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§))))
1413anbi2d 630 . . . . . . . 8 (𝑑 = 𝑇 β†’ (((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§))) ↔ ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))))
1514rexbidv 3179 . . . . . . 7 (𝑑 = 𝑇 β†’ (βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§))) ↔ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))))
1615abbidv 2802 . . . . . 6 (𝑑 = 𝑇 β†’ {π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))} = {π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))})
1716supeq1d 9441 . . . . 5 (𝑑 = 𝑇 β†’ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < ) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
18 eqid 2733 . . . . 5 (𝑑 ∈ (π‘Œ ↑m 𝑋) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < )) = (𝑑 ∈ (π‘Œ ↑m 𝑋) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < ))
19 xrltso 13120 . . . . . 6 < Or ℝ*
2019supex 9458 . . . . 5 sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ) ∈ V
2117, 18, 20fvmpt 6999 . . . 4 (𝑇 ∈ (π‘Œ ↑m 𝑋) β†’ ((𝑑 ∈ (π‘Œ ↑m 𝑋) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‘β€˜π‘§)))}, ℝ*, < ))β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
2210, 21sylan9eq 2793 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) ∧ 𝑇 ∈ (π‘Œ ↑m 𝑋)) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
235, 22sylan2br 596 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
24233impa 1111 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π‘β€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘§ ∈ 𝑋 ((πΏβ€˜π‘§) ≀ 1 ∧ π‘₯ = (π‘€β€˜(π‘‡β€˜π‘§)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆƒwrex 3071   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  supcsup 9435  1c1 11111  β„*cxr 11247   < clt 11248   ≀ cle 11249  NrmCVeccnv 29837  BaseSetcba 29839  normCVcnmcv 29843   normOpOLD cnmoo 29994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-nmoo 29998
This theorem is referenced by:  nmoxr  30019  nmooge0  30020  nmorepnf  30021  nmoolb  30024  nmoubi  30025  nmoo0  30044  nmlno0lem  30046
  Copyright terms: Public domain W3C validator