![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmooval | Structured version Visualization version GIF version |
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoofval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoofval.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoofval.3 | ⊢ 𝐿 = (normCV‘𝑈) |
nmoofval.4 | ⊢ 𝑀 = (normCV‘𝑊) |
nmoofval.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmooval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoofval.2 | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | 1 | fvexi 6920 | . . . 4 ⊢ 𝑌 ∈ V |
3 | nmoofval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3 | fvexi 6920 | . . . 4 ⊢ 𝑋 ∈ V |
5 | 2, 4 | elmap 8909 | . . 3 ⊢ (𝑇 ∈ (𝑌 ↑m 𝑋) ↔ 𝑇:𝑋⟶𝑌) |
6 | nmoofval.3 | . . . . . 6 ⊢ 𝐿 = (normCV‘𝑈) | |
7 | nmoofval.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
8 | nmoofval.6 | . . . . . 6 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
9 | 3, 1, 6, 7, 8 | nmoofval 30790 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) |
10 | 9 | fveq1d 6908 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑇) = ((𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇)) |
11 | fveq1 6905 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
12 | 11 | fveq2d 6910 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑀‘(𝑡‘𝑧)) = (𝑀‘(𝑇‘𝑧))) |
13 | 12 | eqeq2d 2745 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑥 = (𝑀‘(𝑡‘𝑧)) ↔ 𝑥 = (𝑀‘(𝑇‘𝑧)))) |
14 | 13 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
15 | 14 | rexbidv 3176 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧))))) |
16 | 15 | abbidv 2805 | . . . . . 6 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}) |
17 | 16 | supeq1d 9483 | . . . . 5 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
18 | eqid 2734 | . . . . 5 ⊢ (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) | |
19 | xrltso 13179 | . . . . . 6 ⊢ < Or ℝ* | |
20 | 19 | supex 9500 | . . . . 5 ⊢ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ V |
21 | 17, 18, 20 | fvmpt 7015 | . . . 4 ⊢ (𝑇 ∈ (𝑌 ↑m 𝑋) → ((𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
22 | 10, 21 | sylan9eq 2794 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ (𝑌 ↑m 𝑋)) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
23 | 5, 22 | sylan2br 595 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
24 | 23 | 3impa 1109 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 {cab 2711 ∃wrex 3067 class class class wbr 5147 ↦ cmpt 5230 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 supcsup 9477 1c1 11153 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 NrmCVeccnv 30612 BaseSetcba 30614 normCVcnmcv 30618 normOpOLD cnmoo 30769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-nmoo 30773 |
This theorem is referenced by: nmoxr 30794 nmooge0 30795 nmorepnf 30796 nmoolb 30799 nmoubi 30800 nmoo0 30819 nmlno0lem 30821 |
Copyright terms: Public domain | W3C validator |