MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvo00 Structured version   Visualization version   GIF version

Theorem nvo00 28696
Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvo00.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
nvo00 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍}))

Proof of Theorem nvo00
StepHypRef Expression
1 ffn 6504 . 2 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
2 nvo00.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2738 . . . 4 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 28569 . . 3 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
54ne0d 4224 . 2 (𝑈 ∈ NrmCVec → 𝑋 ≠ ∅)
6 fconst5 6978 . 2 ((𝑇 Fn 𝑋𝑋 ≠ ∅) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍}))
71, 5, 6syl2anr 600 1 ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  c0 4211  {csn 4516   × cxp 5523  ran crn 5526   Fn wfn 6334  wf 6335  cfv 6339  NrmCVeccnv 28519  BaseSetcba 28521  0veccn0v 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-1st 7714  df-2nd 7715  df-grpo 28428  df-gid 28429  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-nmcv 28535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator