Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvo00 | Structured version Visualization version GIF version |
Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvo00.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
nvo00 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6600 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → 𝑇 Fn 𝑋) | |
2 | nvo00.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2738 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 28996 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) ∈ 𝑋) |
5 | 4 | ne0d 4269 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑋 ≠ ∅) |
6 | fconst5 7081 | . 2 ⊢ ((𝑇 Fn 𝑋 ∧ 𝑋 ≠ ∅) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍})) | |
7 | 1, 5, 6 | syl2anr 597 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 {csn 4561 × cxp 5587 ran crn 5590 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 NrmCVeccnv 28946 BaseSetcba 28948 0veccn0v 28950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |