![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhnmoi | Structured version Visualization version GIF version |
Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnmo.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
hhnmo.2 | β’ π = (π normOpOLD π) |
Ref | Expression |
---|---|
hhnmoi | β’ normop = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nmop 31662 | . 2 β’ normop = (π‘ β ( β βm β) β¦ sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(π‘βπ¦)))}, β*, < )) | |
2 | hhnmo.1 | . . . 4 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
3 | 2 | hhnv 30988 | . . 3 β’ π β NrmCVec |
4 | 2 | hhba 30990 | . . . 4 β’ β = (BaseSetβπ) |
5 | 2 | hhnm 30994 | . . . 4 β’ normβ = (normCVβπ) |
6 | hhnmo.2 | . . . 4 β’ π = (π normOpOLD π) | |
7 | 4, 4, 5, 5, 6 | nmoofval 30585 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec) β π = (π‘ β ( β βm β) β¦ sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(π‘βπ¦)))}, β*, < ))) |
8 | 3, 3, 7 | mp2an 691 | . 2 β’ π = (π‘ β ( β βm β) β¦ sup({π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(π‘βπ¦)))}, β*, < )) |
9 | 1, 8 | eqtr4i 2759 | 1 β’ normop = π |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1534 β wcel 2099 {cab 2705 βwrex 3067 β¨cop 4635 class class class wbr 5148 β¦ cmpt 5231 βcfv 6548 (class class class)co 7420 βm cmap 8845 supcsup 9464 1c1 11140 β*cxr 11278 < clt 11279 β€ cle 11280 NrmCVeccnv 30407 normOpOLD cnmoo 30564 βchba 30742 +β cva 30743 Β·β csm 30744 normβcno 30746 normopcnop 30768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvmulass 30830 ax-hvdistr1 30831 ax-hvdistr2 30832 ax-hvmul0 30833 ax-hfi 30902 ax-his1 30905 ax-his2 30906 ax-his3 30907 ax-his4 30908 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-grpo 30316 df-gid 30317 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-nmcv 30423 df-nmoo 30568 df-hnorm 30791 df-hvsub 30794 df-nmop 31662 |
This theorem is referenced by: hhbloi 31725 nmopub2tHIL 31733 nmlnop0iHIL 31819 |
Copyright terms: Public domain | W3C validator |