HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhnmoi Structured version   Visualization version   GIF version

Theorem hhnmoi 29285
Description: The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhnmo.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhnmo.2 𝑁 = (𝑈 normOpOLD 𝑈)
Assertion
Ref Expression
hhnmoi normop = 𝑁

Proof of Theorem hhnmoi
Dummy variables 𝑥 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmop 29223 . 2 normop = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ))
2 hhnmo.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 28547 . . 3 𝑈 ∈ NrmCVec
42hhba 28549 . . . 4 ℋ = (BaseSet‘𝑈)
52hhnm 28553 . . . 4 norm = (normCV𝑈)
6 hhnmo.2 . . . 4 𝑁 = (𝑈 normOpOLD 𝑈)
74, 4, 5, 5, 6nmoofval 28142 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < )))
83, 3, 7mp2an 684 . 2 𝑁 = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ))
91, 8eqtr4i 2824 1 normop = 𝑁
Colors of variables: wff setvar class
Syntax hints:  wa 385   = wceq 1653  wcel 2157  {cab 2785  wrex 3090  cop 4374   class class class wbr 4843  cmpt 4922  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  supcsup 8588  1c1 10225  *cxr 10362   < clt 10363  cle 10364  NrmCVeccnv 27964   normOpOLD cnmoo 28121  chba 28301   + cva 28302   · csm 28303  normcno 28305  normopcnop 28327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-hilex 28381  ax-hfvadd 28382  ax-hvcom 28383  ax-hvass 28384  ax-hv0cl 28385  ax-hvaddid 28386  ax-hfvmul 28387  ax-hvmulid 28388  ax-hvmulass 28389  ax-hvdistr1 28390  ax-hvdistr2 28391  ax-hvmul0 28392  ax-hfi 28461  ax-his1 28464  ax-his2 28465  ax-his3 28466  ax-his4 28467
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-grpo 27873  df-gid 27874  df-ablo 27925  df-vc 27939  df-nv 27972  df-va 27975  df-ba 27976  df-nmcv 27980  df-nmoo 28125  df-hnorm 28350  df-hvsub 28353  df-nmop 29223
This theorem is referenced by:  hhbloi  29286  nmopub2tHIL  29294  nmlnop0iHIL  29380
  Copyright terms: Public domain W3C validator