MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnnncan1 Structured version   Visualization version   GIF version

Theorem nvnnncan1 27824
Description: Cancellation law for vector subtraction. (nnncan1 10596 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmf.1 𝑋 = (BaseSet‘𝑈)
nvmf.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvnnncan1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑀(𝐴𝑀𝐶)) = (𝐶𝑀𝐵))

Proof of Theorem nvnnncan1
StepHypRef Expression
1 eqid 2802 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
21nvablo 27793 . 2 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ AbelOp)
3 nvmf.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 27781 . . 3 𝑋 = ran ( +𝑣𝑈)
5 nvmf.3 . . . 4 𝑀 = ( −𝑣𝑈)
61, 5vsfval 27810 . . 3 𝑀 = ( /𝑔 ‘( +𝑣𝑈))
74, 6ablonnncan1 27734 . 2 ((( +𝑣𝑈) ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑀(𝐴𝑀𝐶)) = (𝐶𝑀𝐵))
82, 7sylan 571 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑀(𝐴𝑀𝐶)) = (𝐶𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2155  cfv 6095  (class class class)co 6868  AbelOpcablo 27721  NrmCVeccnv 27761   +𝑣 cpv 27762  BaseSetcba 27763  𝑣 cnsb 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-1st 7392  df-2nd 7393  df-grpo 27670  df-gid 27671  df-ginv 27672  df-gdiv 27673  df-ablo 27722  df-vc 27736  df-nv 27769  df-va 27772  df-ba 27773  df-sm 27774  df-0v 27775  df-vs 27776  df-nmcv 27777
This theorem is referenced by:  minvecolem2  28053
  Copyright terms: Public domain W3C validator