MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub Structured version   Visualization version   GIF version

Theorem nvaddsub 30343
Description: Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvpncan2.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
nvpncan2.3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
Assertion
Ref Expression
nvaddsub ((π‘ˆ ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝑀𝐢) = ((𝐴𝑀𝐢)𝐺𝐡))

Proof of Theorem nvaddsub
StepHypRef Expression
1 nvpncan2.2 . . 3 𝐺 = ( +𝑣 β€˜π‘ˆ)
21nvablo 30304 . 2 (π‘ˆ ∈ NrmCVec β†’ 𝐺 ∈ AbelOp)
3 nvpncan2.1 . . . 4 𝑋 = (BaseSetβ€˜π‘ˆ)
43, 1bafval 30292 . . 3 𝑋 = ran 𝐺
5 nvpncan2.3 . . . 4 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
61, 5vsfval 30321 . . 3 𝑀 = ( /𝑔 β€˜πΊ)
74, 6ablomuldiv 30240 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝑀𝐢) = ((𝐴𝑀𝐢)𝐺𝐡))
82, 7sylan 579 1 ((π‘ˆ ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝑀𝐢) = ((𝐴𝑀𝐢)𝐺𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6533  (class class class)co 7401  AbelOpcablo 30232  NrmCVeccnv 30272   +𝑣 cpv 30273  BaseSetcba 30274   βˆ’π‘£ cnsb 30277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-grpo 30181  df-gid 30182  df-ginv 30183  df-gdiv 30184  df-ablo 30233  df-vc 30247  df-nv 30280  df-va 30283  df-ba 30284  df-sm 30285  df-0v 30286  df-vs 30287  df-nmcv 30288
This theorem is referenced by:  nvnpcan  30344
  Copyright terms: Public domain W3C validator