MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub Structured version   Visualization version   GIF version

Theorem nvaddsub 30684
Description: Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑀𝐶) = ((𝐴𝑀𝐶)𝐺𝐵))

Proof of Theorem nvaddsub
StepHypRef Expression
1 nvpncan2.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvablo 30645 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
3 nvpncan2.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 30633 . . 3 𝑋 = ran 𝐺
5 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
61, 5vsfval 30662 . . 3 𝑀 = ( /𝑔𝐺)
74, 6ablomuldiv 30581 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑀𝐶) = ((𝐴𝑀𝐶)𝐺𝐵))
82, 7sylan 580 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑀𝐶) = ((𝐴𝑀𝐶)𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  AbelOpcablo 30573  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615  𝑣 cnsb 30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629
This theorem is referenced by:  nvnpcan  30685
  Copyright terms: Public domain W3C validator